Test 3 Wed.

Coverage:

Chapter 5: structural induction

Chapter 8:

8.1 modeling w/ recurrences none like Exercise 8(a), but given result for that, must be able to things like 8(b) and 8(c)
8.2 solving linear, constant-coefficient, kth degree recurrences only responsible for homogeneous ones, not (generally) nonhomogeneous, which are treated in the 2nd part of the section. But see the exception below.
8.3 divide and conquer recursions

Chapter 4: Sections 4.1-4.6

- from 4.2, only need fast modular exponentiation, like in the day's class notes
- know (from class notes) about

Euler phi function (how defined, how to evaluate it) Euler's Theorem

Task: Let a_{n} be the number of ternary strings having 3 consecutive $O s$.
Find a recurrence relation for a_{n}.
If you have a valid $(n-1)$-digit ternary string (ie., one that has 3 consecutive O_{s}), it will still be valid no matter if we tack on, as a final digit, a 0,1 or 2. This would account for all valid n-digit strings ending in 1 or 2. However, there are valid n-digit strings ending in 0 that, when considering their first $(n-1)$ digits, are invalid. So, lets only account here for the valid strings ending in 1 or 2 , of which there are $2 a_{n-1}$, and deal with those ending in 0 separately.

- If it ends in just one zero, as in
$\ldots 10$ or $\ldots 20$
then it must have been already valid (already had 3 consecutive zeros) before the final two digits were tacked on. As there are 2 ways to tack on the final two digits so that you end in 0 , this contributes $2 a_{n-2}$.
- If it ends in exactly two zeros, as in

$$
\ldots 100 \quad \text { or } \quad \ldots .200
$$

then it must have been already valid (already had 3 consecutive zeros) before the final three digits were tacked on. As there are 2 ways to tack on the final three digits so that you end in 00 , this contributes $2^{2} a_{n-3}$.

- If it has 3 or more final zeros, as in

$$
\ldots 0000, \ldots 1000 \text {, or } \ldots 2000
$$

then it doesn't matter whether it was already valid in its first $(n-3)$ digits. Every one of the length n-3 temary strings become a valid length n ternary string when three final zeros are added. So, this group has size 3^{n-3}.

Using the above,

$$
a_{n}=2 a_{n-1}+2 a_{n-2}+2 a_{n-3}+3^{n-3} .
$$

Note: It is this sort of task from Section 8.1 Ives said you will not be asked to do on Test 3. But, given this boxed recurrence relation, along with whet a_{n} counts, I might ask for

- initial conditions
- The values of a_{4}, a_{5}, a_{6}, etc.

Homogeneous is an adjective that is not used unless your recurrence is linear.

There are many nonlinear recurrences. One example

$$
a_{n}=3 a_{n-1} a_{n-2}+5, \quad a_{0}=2, a_{1}=3
$$

Would not ask you to "solve" (i.e., find formula $a_{n}=$ \qquad closed
Might ask: Find a_{2}, a_{3}, a_{4}

Or, another

$$
a_{n}=n a_{n-1} \quad \text { linear, but non-constant coeff. }
$$

$$
a_{0}=1
$$

methods in 8.2 doit work (cont assume $a_{n}=r^{n}$.)

$$
\begin{aligned}
& a_{1}=1 \cdot a_{0}=1 \\
& a_{2}=2 \cdot a_{1}=2 \cdot 1=2 \\
& a_{3}=3 \cdot a_{2}=3 \cdot 2=6
\end{aligned}
$$

This turns out to be quite solvable: $a_{n}=n$!

Here is a linear $1^{\text {st }}$-degree nonhomoqueous recurrence relation:

$$
a_{n}=3 a_{n}+2, \quad a_{0}=5
$$

This will not be on Test 3, but we have solved this type before using the "iterative method". (But, be prepared to see it on the final.)

The iterative approach:

$$
\begin{aligned}
a_{n} & =3 a_{n-1}+2 \\
& =3\left(3 a_{n-2}+2\right)+2=3^{2} a_{n-2}+3 \cdot 2+2 \\
& =3^{2}\left(3 a_{n-3}+2\right)+3 \cdot 2+2=3^{3} a_{n-3}+3^{2} \cdot 2+3 \cdot 2+2 \\
& =3^{3}\left(3 a_{n-4}+2\right)+3^{2} \cdot 2+3 \cdot 2+2=3^{4} a_{n-4}+3^{3} \cdot 2+3^{2} \cdot 2+3 \cdot 2+2 \\
& =\cdots \\
& =3^{n} a_{0}+\underbrace{3^{n-1} \cdot 2+3^{n-2} \cdot 2+\cdots+3^{2} \cdot 2+3 \cdot 2+2}_{\text {trons of } a \text { geometric }}
\end{aligned}
$$

sequence, with sum

$$
2 \cdot \frac{3^{n}-1}{3-1}=3^{n}-1
$$

$$
=3^{n} \cdot a_{0}+3^{n}-1=3^{n} \cdot 5+3^{n}-1=3^{n}(5+1)-1
$$

So

$$
a_{n}=6 \cdot 3^{n}-1
$$

Structural induction
On oct. 22 (see notes), I defined recursively a set S of strings on the alphabet $\{a, b\}$ in this manner:

Base Step: Admit to S the empty string λ and the string aah.
Recursive step: Given words/strings $w_{1}, w_{2}, \ldots, w_{n} \in S$, admit into S the string formed via concatenation t :

$$
\begin{aligned}
& \omega_{1}+\omega_{2}+\cdots+\omega_{n}
\end{aligned}=\omega_{1} \omega_{2} \cdots \omega_{n} . ~=a b b a b b+\lambda=\text { aabaababaab. }
$$

Claim: Every word in S has length divisible by 3.
(Use structural induction to prove this.)
Basis Step: The two initially-admitted words, λ and aa, have lengths 0 and 3 , both being divisible by 3 .
Induction Step: Suppose $\omega_{1}, \omega_{2}, \ldots, \omega_{n} \in S$ are to be used to build a new word. The induction hypothesis is that each of $w_{1}, \omega_{2}, \ldots, w_{n}$ have lengths $l\left(w_{i}\right)$ divisible by 3 . That is, \exists integers $k_{1}, k_{2}, \ldots, k_{n}$ such that

$$
l\left(w_{1}\right)=3 k_{1}, \quad l\left(w_{2}\right)=3 k_{2}, \cdots, \quad l\left(w_{n}\right)=3 k_{n} .
$$

The concatenated word $\omega=\omega_{1} \omega_{2} \cdots \omega_{n}$ has length

$$
\begin{aligned}
l(w) & =l\left(w_{1}\right)+l\left(w_{2}\right)+\cdots+l\left(w_{n}\right) \\
& =3 k_{1}+3 k_{2}+\cdots+3 k_{n} \\
& =\frac{3\left(k_{1}+k_{2}+\cdots+k_{n}\right)}{a_{n} \text { integer }}
\end{aligned}
$$

showing that $3 \mid l(w)$.

