- 1. (a) If my parents do not ask me to do my chores, then I don't mind doing them.
 - (b) If I mind doing my chores then my parents ask(ed) me to do them.
 - (c) If I don't mind doing my chores, then my parents have not asked me to do them.
- 2.

$$\neg (p \land (\neg p \lor q)) \equiv \neg p \lor \neg (\neg p \lor q)$$
$$\equiv \neg p \lor (p \land \neg q)$$
$$\equiv (\neg p \lor p) \land (\neg p \lor \neg q)$$
$$\equiv T \land (\neg p \lor \neg q)$$
$$\equiv \neg p \lor \neg q$$

	р	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \land (q \to p)$
	F	F	Т	Т	Т	Т
3.	F	Т	F	Т	F	F
	Т	F	F	F	Т	F
	Т	Т	Т	Т	Т	Т

Note the third column and final column match, establishing logical equivalence.

- 4. (d) $\{\{\}, \{0\}, \{1\}, \{0, 1\}\}$
 - (e) {−2, −1, 2}
 - (f) Ø
 - (g) Since $A \times A \times B$ has coordinate triples (a_1, a_2, b) , and there are 5 possible values for both a_1, a_2 but only two for *b*, that means there are (5)(5)(2) = 50 elements.
 - (h) Since *A* has 5 elements, the subsets of *A* correspond to the 5-bit binary words, 00000, 00001, 00010, ..., 11111, of which there are $2^5 = 32$.
 - (i) The only values a characteristic function produce are 0 and 1, so the range is {0,1}.
 - (j) The inputs from \mathbb{R} that would result in the output 1 are precisely those *x*-values in the interval (-3,3].
 - (k) $f(A) = \{f(-2), f(-1), f(0), f(1), f(2)\} = \{-1, -1, 0, 0, 1\} = \{-1, 0, 1\}$

(1)
$$f^{-1}(B) = \{x \in A \mid (f(x) = 0) \lor (f(x) = 1)\} = \{0, 1, 2\}$$

- 5. (a) S (b) B (c) N
- 6. (a) $\exists x \forall p V(x, p)$ has negation $\neg \exists x \forall p V(x, p) \equiv \forall x \exists p(\neg V(x, p))$, which leads to this: "Given anyone in the class, there is some national park that person has not visited."
 - (b) "There is no path from here to there, or there are at least two paths from here to there."
 - (c) We have the equivalence $(p \to q) \equiv (q \lor \neg p)$, and that has negation $\neg (q \lor \neg p) \equiv \neg q \land p$. Translating back to English, this is "I fall asleep and my roommate is snoring."