Solutions

1. (b) $\frac{3 x^{4}+5 x^{3}+8 x}{2 x+1}$ is $\Omega\left(x^{3}\right)$ with witnesses $C=1, k=1$.
(d) $\frac{3 x^{4}+5 x^{3}+8 x}{2 x+1}$ is $O\left(x^{3}\right)$ with witnesses $C=8, k=1$.
2. Every nonempty subset of \mathbb{N} has a smallest element.
3. (a) They have the same cardinality since they can be put in one-to-one correspondence, the naturals on the left associated with a partner from the other set on the right so that the mapping $n \mapsto 2 n$ is bijective:

\mathbb{N}		nonnegative evens
0	\leftrightarrow	0
1	\leftrightarrow	2
2	\leftrightarrow	4
3	\leftrightarrow	6
	\vdots	
n	\leftrightarrow	$2 n$
	\vdots	

(b) \mathbb{Q} and \mathbb{Z} are countably infinite. \mathbb{R} is uncountable. The last set is finite, consisting only of 100 numbers $\{0,1,2, \ldots, 99\}$.
4. First, using the formula for the sum of finitely many terms in a geometric series, we have the amount owed after n months is

$$
25000 r^{n}-\left(m+m r+m r^{2}+\cdots+m r^{n-1}\right)=25000 r^{n}-m \frac{r^{n}-1}{r-1}
$$

We want that amount to be 0 when we plug in $n=60$, so setting the latter expression equal to 0 , we have

$$
\begin{aligned}
25000 r^{60}-m \frac{r^{60}-1}{r-1}=0 \quad & \Rightarrow \quad m \frac{r^{60}-1}{r-1}=25000 r^{60} \\
& \Rightarrow \quad m=25000 r^{60} \frac{r-1}{r^{60}-1}=25000(1.005)^{60} \frac{1.005-1}{1.005^{60}-1}=483.32 .
\end{aligned}
$$

5. We have

$$
\begin{aligned}
a_{n} & =a_{n-1}+13=\left(a_{n-2}+13\right)+13 \\
& =a_{n-2}+(13)(2)=\left(a_{n-3}+13\right)+2(13) \\
& =a_{n-3}+(13)(3)=\left(a_{n-4}+13\right)+3(13) \\
& =a_{n-4}+(13)(4)=\cdots \\
& =a_{0}+13 n=11+13 n .
\end{aligned}
$$

7. (a) It is not true for $n=1$, but is true for $n=2,3$, and so on. So, it seems the set $A=\{2,3,4, \ldots\}$.
(b) Basis step, $S(2)$:

The left side, $2^{2}=4$, is less than the right side $(2+1)!=6$.
Induction step, $S(k) \rightarrow S(k+1)$:
We assume that, for some $k \geq 2, S(k)$ holds, namely, $2^{k}<(k+1)!$. To prove $S(k+1)$, we start with
the quantity 2^{k+1}. In what follows, the induction hypothesis is used at the first instance of an inequality.

$$
2^{k+1}=2^{k} \cdot 2<(k+1)!(2)<(k+1)!(k+2)=(k+2)!.
$$

8. (a) The base case is $P(1)$. When both piles have just 1 matchstick, Player 1 is forced to take one emptying one of the piles. Then Player 2 wins by taking the 1 from the other pile.
(b) His proof uses strong induction. There is, after all, the possibility that $1<j<k+1$. So after Player 1 removes j matchsticks (more than one, but not all) from one pile and Player 2 mirrors that action, drawing j from the other, we rely on $P(k+1-j)$ to be true. In mathematical induction, our induction hypothesis would only allow us to assume $P(k)$ was true, which only helps if $j=1$. In strong induction we get to assume more cases.
(c) Our induction hypothesis is that for some integer $k \geq 1$, the compound proposition

$$
P(1) \wedge P(2) \wedge \cdots \wedge P(k)
$$

holds true. That is, at any initial number of matchsticks j with $1 \leq j \leq k$ in both piles, Player 2 can guarantee a win.
(d) The set $A=\mathbb{Z}^{+}$, the positive integers.

