Solutions

- 1. (b) $\frac{3x^4 + 5x^3 + 8x}{2x + 1}$ is $\Omega(x^3)$ with witnesses C = 1, k = 1. (d) $\frac{3x^4 + 5x^3 + 8x}{2x + 1}$ is $O(x^3)$ with witnesses C = 8, k = 1.
- 2. Every nonempty subset of \mathbb{N} has a smallest element.
- 3. (a) They have the same cardinality since they can be put in one-to-one correspondence, the naturals on the left associated with a partner from the other set on the right so that the mapping $n \mapsto 2n$ is bijective:

\mathbb{N}		nonnegative evens
0	\leftrightarrow	0
1	\leftrightarrow	2
2	\leftrightarrow	4
3	\leftrightarrow	6
	÷	
п	\leftrightarrow	2n
	:	

- (b) \mathbb{Q} and \mathbb{Z} are countably infinite. \mathbb{R} is uncountable. The last set is finite, consisting only of 100 numbers {0, 1, 2, ..., 99}.
- 4. First, using the formula for the sum of finitely many terms in a geometric series, we have the amount owed after *n* months is

$$25000r^{n} - (m + mr + mr^{2} + \dots + mr^{n-1}) = 25000r^{n} - m\frac{r^{n} - 1}{r - 1}$$

We want that amount to be 0 when we plug in n = 60, so setting the latter expression equal to 0, we have

$$25000r^{60} - m\frac{r^{60} - 1}{r - 1} = 0 \qquad \Rightarrow \qquad m\frac{r^{60} - 1}{r - 1} = 25000r^{60}$$
$$\Rightarrow \qquad m = 25000r^{60}\frac{r - 1}{r^{60} - 1} = 25000(1.005)^{60}\frac{1.005 - 1}{1.005^{60} - 1} = 483.32.$$

5. We have

$$a_n = a_{n-1} + 13 = (a_{n-2} + 13) + 13$$

= $a_{n-2} + (13)(2) = (a_{n-3} + 13) + 2(13)$
= $a_{n-3} + (13)(3) = (a_{n-4} + 13) + 3(13)$
= $a_{n-4} + (13)(4) = \cdots$
= $a_0 + 13n = 11 + 13n$.

- 7. (a) It is not true for n = 1, but is true for n = 2, 3, and so on. So, it seems the set $A = \{2, 3, 4, \ldots\}$.
 - (b) **Basis step**, S(2): The left side, $2^2 = 4$, is less than the right side (2 + 1)! = 6.

Induction step, $S(k) \rightarrow S(k + 1)$: We assume that, for some $k \ge 2$, S(k) holds, namely, $2^k < (k + 1)!$. To prove S(k + 1), we start with the quantity 2^{k+1} . In what follows, the induction hypothesis is used at the first instance of an inequality.

$$2^{k+1} = 2^k \cdot 2 < (k+1)!(2) < (k+1)!(k+2) = (k+2)!.$$

- 8. (a) The base case is *P*(1). When both piles have just 1 matchstick, Player 1 is forced to take one emptying one of the piles. Then Player 2 wins by taking the 1 from the other pile.
 - (b) His proof uses strong induction. There is, after all, the possibility that 1 < j < k + 1. So after Player 1 removes *j* matchsticks (more than one, but not all) from one pile and Player 2 mirrors that action, drawing *j* from the other, we rely on P(k+1-j) to be true. In mathematical induction, our induction hypothesis would only allow us to assume P(k) was true, which only helps if j = 1. In strong induction we get to assume more cases.
 - (c) Our induction hypothesis is that for some integer $k \ge 1$, the compound proposition

$$P(1) \wedge P(2) \wedge \cdots \wedge P(k)$$

holds true. That is, at any initial number of matchsticks j with $1 \le j \le k$ in both piles, Player 2 can guarantee a win.

(d) The set $A = \mathbb{Z}^+$, the positive integers.