Stat 145, Tue 7-Sep-2021 -- Tue 7-Sep-2021
Biostatistics
Spring 2021

Tuesday, September 07th 2021

Due:: PSO1 due at 11 pm
Due:: PSQ2 due at 11 pm

Tuesday, September 07th 2021

Wk 2, Tu
Topic: : Shape/form of distribution
Topic:: Quantiles and mean
Read:: Lock5 2.1-2.2
HW: WW Descriptive1 due Sat.
administrative:

- take attendance
- mention quiz
distributions - gives values taken, and how often
- univariate
- "displayed" using
categorical vars: frequency tables (tally()), bar graphs (gf_bar())
frequency vs. relative frequency
quant vars: frequency tables (tally()), histograms (gf_histogram()), other?
- form/shape
number of modes
symmetric vs. skew (quantitative only)
bivariate displays
- used to begin investigations of associations
- two categorical vars.
contingency table
side-by-side bar graphs
- one categorical, one quantitative contingency table?
side-by-side dotplots/histograms
- two quantitative

scatterplot

association can be equated with "a nonhorizontal pattern exists" positive vs. negative association (not the only possibilities)
relationships/associations between variables:
ssurv <- read.csv("http://scofield.site/teaching/data/csv/ssurv.csv")
tally:

```
tally(~selfhandedness | sex, data=ssurv)
tally(~selfhandedness | sex, data=filter(ssurv, selfhandedness!=""))
```

tally(~selfhandedness | dadhandedness, data=filter(ssurv, dadhandedness!=""))
addmargins():
addmargins(tally(\sim selfhandedness | dadhandedness, data=ssurv)) or, an alternate method tally(~selfhandedness | dadhandedness, data=ssurv) \%>\% addmargins()
\uparrow
uses "piping"
gf_bar()
gf_bar(~selfhandedness|dadhandedness, data=filter(ssurv, dadhandedness!=""))
gf_histogram() quantitative categorical
gf_histogram(~speedtickets | oncampus, data=ssurv)
Associations between variables

- context: bivariate data
from ssurv.csv
sex and handedness: two categorical vars
We used tally (~ sex | handedness, data = surv) to obtain contingency table $\left.\begin{array}{l}\text { proportion of leff-handed women to all women in sample? } \\ \text { proportion of left-handed men to all women in sample? } \\ 16 / 139\end{array}\right\} \begin{aligned} & \text { association }\end{aligned}$ speeding tickets vs. off-campus: one quantitative, one categorical var. side-by-side histograms (see above for command)
speeding tickets vs. number of cds: two quantitative vars.

$$
\begin{aligned}
& \text { Scatterplot using } \# \text { of } c d s \text { as explanatory variable comes from command } \\
& \text { gf_point (speedtickets } \sim c d s, \text { data }=s s u r v)
\end{aligned}
$$

Further notes not covered (?) in class on Sept. 7
Example:

- histogram of cds in ssurv
gf_histogram(~cds, data=ssurv, color="black", bins=10)
gf_dhistogram(\sim cds, data=ssurv, color="black", bins=10)

features

the color switch is unnecessary, but delineates the bins
it isn't obvious there are 10 bins, since some are empty
gf_dhistogram doesn't give count in bins; proportionally adjusts area $=1$
shape is subject to bin size (more bins means thinner bins) density plot attempts to smooth things out
gf_density(~cds, data=ssurv)
verbal description
unimodal (describes number of major peaks)
right-skewed (most-frequent words: symmetric, right-/left-skewed)

- histogram of eruptions in faithful

Q: Would you expect home-sale prices in Grand Rapids to be symmetric?
right-skewed?
left-skewed?

Discuss: Is there a variable you can think of that would be left-skewed?

- histogram of randomnum in ssurv gf_histogram(\sim randomnum, bins =20, data=filter(ssurv, randomnum <= 20)) might have expected a flat (uniform) distribution

Uniform distributions (all values occur equally) can arise in categorical data

- coin flips (H, T) coin = c("H","T")

```
resultOfFlips = sample(coin, 500, replace=TRUE)
tally(~resultOfFlips)
gf_bar(~result0fFlips)
gf_percents(~resultOfFlips)
```

- rock, paper, scissors?
see StatKey: One Categorical Variable, under Descriptive Statistics
- days of the week for births in 2015
scofield only can do this example using data frame all2015Births
- when distribution of categorical variable is not uniform shape isn't generally relevant (due to resequencing of bars) can still identify mode(s)

Quantiles/percentiles

- concept for quantitative vars only
- English monarchs: years is quantitative
em = read.csv("http://scofield.site/teaching/data/csv/monarchReigns.csv")
gf_dotplot(~years, data=em) \# produces a dotplot; compare w/ histogram
qdata(\sim years, .5, data=em) \# produces .5-quantile $=50$ th percentile
median(~years, data=em) \# also gives median
qdata(~years, c(.1,.2,.3), data=em) \# produces .1-, .2, .3-quantiles
- terms
median of a variable $=50$ th percentile of that variable
1st quartile (Q1) $=25$ th percentile of that variable
3rd quartile (Q3) = 75th percentile of that variable
5-number summary
gives: min, Q1, median, Q3, max
fivenum(~years, data=em)
box-and-whisker plot
gf_boxplot(~years, data=em)

Mean = average

- formula
- command: mean(~years, data=em)
- sensitive to outliers
different from median, which is "resistant to outliers"
app at istats.shinyapps.io/MeanvsMedian/
observations
right-skewed corresponds to mean larger than median
left-skewed corresponds to mean smaller than median when symmetric, mean and median are roughly equal - where median and mean are located on histogram/dotplot

```
Commands introduced today:
    qdata - for finding quantiles of a quantitative variable
    median - specifically finds the median of a quantitative variable
    fivenum - delivers the 5-number summary of a quantitative variable
    mean - finds the mean of a quantitative variable
    sample - produces a list drawn from a list of values
    gf_dhistogram - like histogram, but scales area to be 1
    gf_density - smoothed-out histogram, area equals 1
    gf_percents - like bar graph, but gives relative frequencies, not frequencies
    gf_dotplot - for quantitative variable without too many values
    gf_boxplot - for quantitiative variable, visual depiction of 5-number summary
```

