Stat 145, Wed 8-Sep-2021 -- Wed 8-Sep-2021
Biostatistics
Spring 2021

Wednesday, September 8th 2021

Wk 2, We
Topic: Summary statistics
Read:: Lock5 2.3-2.4

Warmup question Would you expect home-sale prices in Grand Rapids to be

- symmetric?
- right-skewed?
- left-skewed?

Administrative:

- difficulties to date with submitting to Gradescope? accessing WebWork?
- access to bolded dataset names in the textbook

examples

AllCountries, in Exercise 2.56
April14Temps, in Example 2.15

- when you use an RStudio calculation in homework, cite
the command you typed
the result it gave

Q: Look at April14Temps data. It is arranged like this
Year DesMoines SanFrancisco
$11995 \quad 56.0 \quad 51.0$
$21996 \quad 37.5 \quad 55.3$
$\begin{array}{llll}3 & 1997 & 37.2 & 55.7\end{array}$
$\begin{array}{llll}4 & 1998 & 56.0 & 48.7\end{array}$
$\begin{array}{llll}5 & 1999 & 54.3 & 56.2\end{array}$

Would the data be understood the same way if it were arranged like this?

measusement	City	Temp	Year
1	SanFrancisco	48.7	1998
2	SanFrancisco	55.7	1997

3	DesMoines	56.0	1995
4	DesMoines	54.3	1999
5	SanFrancisco	55.3	1996
4	SanFrancisco	51.0	1995
4	DesMoines	37.2	1997
-	SanFrancisco	56.2	1999
	DesMoines	56.0	1998
	DesMoines	37.5	1996

Quantiles/percentiles

- concept arises for (single) quantitative var. (not for a categorical var.)
- English monarchs data: years is quantitative
em = read.csv("http://scofield.site/teaching/data/csv/monarchReigns.csv")
gf_dotplot(~years, data=em) \# produces a dotplot; compare w/ histogram gf_dotplot(~years, data=em, dotsize=.3)
qdata(years, .5, data=em) \# produces . 5 -quantile $=50$ th percentile
median(~years, data=em) \# also gives median
qdata(~years, c(.1,.2,.3), data=em) \# produces .1-, .2-, .3-quantiles
- terms
median of a variable $=50$ th percentile of that variable
1st quartile (Q1) $=25$ th percentile of that variable
3rd quartile (Q3) $=75$ th percentile of that variable
5-number summary
gives: min, Q1, median, Q3, max
qdata($\sim y e a r s, ~ d a t a=e m)$
box-and-whisker plot
gf_boxplot($\sim y e a r s, ~ d a t a=e m) ~$
range $=\max -\min \quad$ (the distance between smallest and largest values)
$\mathrm{IQR}=\mathrm{Q} 3-\mathrm{Q} 1 \quad$ (IQR = interquartile range)
automated outlier-flagging: the $1.5-\mathrm{IQR}$ rule

Mean = average

- formula
- command: mean(~years, data=em)
- sensitive to outliers
different from median, which is "resistant to outliers"
app at istats.shinyapps.io/MeanvsMedian/
observations
right-skewed corresponds to mean larger than median
left-skewed corresponds to mean smaller than median when symmetric, mean and median are roughly equal
- where median and mean are located on histogram/dotplot

Commands introduced today. cheeked ones
\checkmark qdata - for finding quantiles of a quantitative variable median - specifically finds the median of a quantitative variable mean - finds the mean of a quantitative variable
\checkmark favstats - finds a number of values
gf_dhistogram - like histogram, but scales area to be 1
gf_density - smoothed-out histogram, area equals 1
gf_percents - like bar graph, but gives relative frequencies, not frequencies
/ gf_dotplot - for quantitative variable without too many values
gf_boxplot - for quantitiative variable, visual depiction of 5 -number summary
rep - produces a list copying a value a specified number of times sample - produces a list drawn from a list of values

FURTHER THOUGHTS (not covered in class?)

Examples of bias

- In surveys: scenarios
"Local library is sponsoring talk by Planned Parenthood representative.
Do you think our community should sanction baby-killers?"
leading questions
Ann Landers on whether parents would choose to have children in do-over voluntary response bias
Literary digest survey leading into 1936 election
poor sampling frame
"Do you take elicit drugs?"
embarrassing question
"How old were you when you stopped taking baths?" imperfect recall
"Do you prefer this first soft drink, or the second one?" order of presentation should be random to avoid bias
"Which candidate did you vote for?", asked outside only during hours 7-9 am convenience sample
- In experiments measuring instrument not calibrated order of treatment
experiments and observational studies
- both types of studies may have explanatory/response vars
- observational study does not attempt to assign explanatory values
==> when difference appears significant, cannot rule out lurking vars in presence of significant difference only say vars have an association
- blocking
identifying specific (non-factor) variables to even out
example: soil, sunlight in agricultural studies
example: sex, smoking status, age in drug studies
matched pairs: each "case" contributes two values case might be a person: contributes "control" and "treatment" values case might be identical twins: one twin is "control" for the other case might be "married couple": one spouse is "control" for the other

Measures of "center" (or "central tendancy")

- what they are

```
    mode = location/value occurring most frequently
        meaningful for both categorical and quantitative variables
    median = 50th percentile
        meaningful for quantitative variables only
        resistant to outliers
    mean = average
        meaningful for quantitative variables only
        sensitive to outliers
- visualizing on a distribution
    mean is balancing point
    median cuts values/area in half
```

Measures of "spread"
- what they are
range: sensitive to outliers
IQR: resistant to outliers
standard deviation: sensitive to outliers

Q3: 5-number summary has 4 other numbers besides the median.
Are these other numbers resistant to outliers, or are they sensitive?

