```
Stat 145, Tue 14-Sep-2021 -- Tue 14-Sep-2021
```

Biostatistics
Spring 2021

Tuesday, September 14th 2021

Wk 3, Tu

Topic:: Correlation

Read:: Lock5 2.5

Warmup: "simple" tasks in R

1. make a list, calculate a mean, median, sd
2. make a relative frequency table tally(~ var, data=..., format="proportion") tally(~ var, data=..., format="percent")
3. make a two-way table of relative frequencies tally(~selfhandedness | sex, data=ssurv, format="proportion") tally(~ sex | selfhandedness, data=ssurv, format="proportion") each column adds up to 100%
or
prop.table(tally (~selfhandedness | sex)) tally(~selfhandedness | sex) \%>\% prop.table() all cells combined add up to 100%
4. side-by-side
boxplots of Sepal.Width broken down by Species gf_boxploth(Species ~ Sepal.Width, data=iris)
histograms of same

Task for each student: To your myRstudioCheatSheet.Rmd file, add personal helps on the use of these commands. Whenever it makes sense, try these in univariate and bivariate settings.
read.csv()
head()
help()
$\operatorname{dim}()$

```
names()
tally()
addmargins()
mean()
median()
sd()
favstats()
filter()
gf_boxplot()
    try replacing gf_boxplot() with gf_percents() and note the difference
gf_point()
gf_histogram()
    try replacing with gf_dhistogram() and note the difference
gf_density()
```


- Requires bivariate data-i.e., two variables measured on the same subjects/units
- Usually come to think of one variable as explanatory and the other as response.
- Having an association means knowledge of the explanatory variable for a case makes you better informed (even just slightly) about the value of the response for that case.

One of the main points of inferential statistics is to discern the real associations from the phantom ones.

- Pairings of variables can be
- two categorical variables
- one categorical variable, one quantitative

In this case, it is usually the categorical one that serves as explanatory.

- two quantitative variables

Q2: Write an R command.

1. If you had a (large) data frame whose variables included ageCategory (18 or younger, young adult 18-25, adult 25-65, senior) and receivedShot (Yes, No; indicates whether the person has received a Covid vaccine shot), what would a command that helped investigate an association between variables look like? Write one out.
2. If you wished to compare waitTime for individuals visiting the ER at one of the local hospitals (hospital variable has values Butterworth, Blodgett, and St. Mary's), write a command you could use to begin your investigation.

- scatter plots

Any real, non-horizontal-line pattern is indicative of an association

```
gf_point(weight ~ height, data=women)
```

- correlation

A measure on how non-horizontal, linear the pattern is

Sep 14, $2111: 11$ myRstudioCheatSheet.Rmd \quad Page 1/2	Sep 14, 21 11:11 myRstudioCheatSheet.Rmd Page	
```title: "RStudio Cheat Sheet" author: "T.Scofield" date: '`r format(Sys.Date(), "%B %d, %Y")`' output: pdf_document: fig_height: 2.2 fig_width: 4 html_document: fig_height: 2.2 fig_width: 4 word_document: fig_height: 2.2 fig_width: 4```{r, setup, include = FALSE, message=FALSE} # load packages that are going to be used library(mosaic) # this loads ggformula (for plotting), etc. too library(openintro) # this loads data sets intro to modern stats library(oibiostat) # this loads data sets open intro biostats library(pander) # for tables # Some customization. You can alter or delete as desired (if you know what you a re doing). theme_set(theme_bw()) # change theme for ggplot2/ggformula knitr::opts_chunk$set( tidy = FALSE, # display code as typed (rather than reformatted) size = "small") # slightly smaller font for code ## Making a list of numbers, calculating statistics from it Suppose I want things like the mean, sd, median, etc. for the list of numbers 9, 11, 7, 13, 10. `{r} c(9, 11, 7, 13, 10) -> x mean (~x) ` ## Tables To make a frequency table `"{r} ssurv <- read.csv("http://scofield.site/teaching/data/csv/ssurv.csv") tally(~ selfhandedness, data=ssurv) If I want a relative frequency table instead `"{r} tally(~ selfhandedness, data=ssurv, format="proportion") For bivariate data (i.e., two-way tables) `{r} tally(~ selfhandedness \| sex, data=ssurv) Adding the "format" switch `'{r} tally(~ selfhandedness \| sex, data=ssurv, format="percent") ```& \begin{tabular}{l} gives us percentages out of the whole, done for each column. If we want to rse the roles of 'sex' and 'handedness ',``` `"{r} tally(~ sex \| selfhandedness, data=ssurv, format="percent") `` \\ Now, to make the total of all combined cells make up 100 percent, "' \(\{r\}\) \\ tally(~selfhandedness	sex, data=ssurv) \%>\% prop.table() \\ \#\# Plotting bivariate data \\ In the 'iris` data frame, there is a column (categorical) called 'Species' and another column (quantitative) called `Sepal.Width`. If I want side-by-side boxplots for the quantitative variable broken down by the categorical one " ' $\{r\}$	
gf_boxplot(~ Sepal. Width \| Species, data=iris)		
Now, try out this modification		
… $\{r\}$		
gf_boxplot(Species ~ Sepal.Width, data=iris)		 

\hline
\end{tabular}

# RStudio Cheat Sheet 

T.Scofield

September 14, 2021

## Making a list of numbers, calculating statistics from it

Suppose I want things like the mean, sd, median, etc. for the list of numbers $9,11,7,13,10$.

```
c(9, 11, 7, 13, 10) -> x
mean(~x)
[1] 10
```


## Tables

To make a frequency table

```
ssurv <- read.csv("http://scofield.site/teaching/data/csv/ssurv.csv")
tally(~ selfhandedness, data=ssurv)
selfhandedness
L R
1 31 248
```

If I want a relative frequency table instead

```
tally(~ selfhandedness, data=ssurv, format="proportion")
selfhandedness
L R
0.003571429 0.110714286 0.885714286
For bivariate data (i.e., two-way tables)
tally(~ selfhandedness | sex, data=ssurv)
\begin{tabular}{lrr}
\#\# & \multicolumn{2}{c}{ sex } \\
\#\# & \\
\#elfhandedness & F & M \\
\#\# & & 0 \\
\#\# & L & 15 \\
\#\# & R & 124 \\
\# & 124
\end{tabular}
Adding the "format" switch
tally(~ selfhandedness | sex, data=ssurv, format="percent")
\begin{tabular}{lrr}
\#\# & \multicolumn{1}{c}{ sex } & \\
\#\# selfhandedness & F & M \\
\#\# & 0.0000000 & 0.7092199 \\
\#\# & L 10.7913669 & 11.3475177 \\
\#\# & R 89.2086331 & 87.9432624
\end{tabular}
```

gives us percentages out of the whole, done for each column. If we want to reverse the roles of sex and handedness,
tally(~ sex | selfhandedness, data=ssurv, format="percent")
\#\# selfhandedness

\#\#	sex		L	$R$
\#\#	F	0.0000	48.3871	50.0000
\#\#	M	100.0000	51.6129	50.0000

Now, to make the total of all combined cells make up 100 percent,

```
tally(~selfhandedness | sex, data=ssurv) %>% prop.table()
```

\#\#	sex		
\#\#	selfhandedness	F	M
\#\#	0.000000000	0.003571429	
\#\#	L 0.053571429	0.057142857	
\#\#	R	0.442857143	0.442857143

## Plotting bivariate data

In the iris data frame, there is a column (categorical) called Species and another column (quantitative) called Sepal.Width. If I want side-by-side boxplots for the quantitative variable broken down by the categorical one

gf_boxplot(Species ~ Sepal.Width, data=iris)


