Stat 145, Wed 15-Sep-2021 -- Wed 15-Sep-2021

Wednesday, September 15th 2021

Due:: PSO3 due at 11 pm

Wednesday, September 15th 2021

Wk 3, We
Topic:: Correlation
Read:: Lock5 2.5
Topic:: least-squares regression
Read:: Lock5 2.6

Warmup:

- where to place mean and median on various density curves
- need na.rm=TRUE switch with mean()

The Correlation Coefficient

- It is used for (near) linear relationships between quantitative variables. The data involved must be true bivariate data-i.e., two quantities measured on the same subjects/units.
- These are the same kind of scenarios (variable-wise) as those in which a scatterplot is possible.
- You could not talk about the correlation coefficient between these two variables: model of car and price of car.
- It measures direction and strength of a linear relationship.
- distinction between variables having an association and variables being correlated. The authors use the phrase "two variables are correlated" as synonomous with say "the two variables have an association", which seems to add only to the confusion.
- Be careful! Data that has a strong association, can have a correlation coefficient near zero. Look at your data to see if a correlation coefficient makes sense.

```
xs = seq(0,4,.25)
ys = (xs-2)^2 / 4 + 1 + rnorm(length(xs), 0, 0.1)
gf_point(ys ~ xs)
cor(ys ~ xs)
```


cor (ys ~ xs)
[1] 0.03695452

- Similarly, data can produce a correlation coefficient close to (± 1), even though the relationship is not linear:

```
xs = seq(-1,1,.1) + 1
ys = (xs-1)^3 + rnorm(length(xs), 0, 0.05) + 2
plot(xs, ys, col="navy", pch=19, cex=.5)
```


xs

```
cor(ys ~ xs)
[1] 0.9079114
```

- As with other quantities (the mean, for instance), there is a population correlation coefficient (denoted by ρ) and a sample correlation (denoted by r)
- Always a number between (-1) and 1 .

At the lower extreme (-1), a scatterplot of the two variables will exactly lie on a straight line with negative slope.
At the upper extreme (1), a scatterplot of the two variables will exactly lie on a straight line with positive slope.
Correlation coefficients near zero indicate a weak or nonexistent linear association.

- The sample correlation coefficient is calculated using some of the same kinds of squared deviations from the mean as "sum of squares" calculations for ANOVA, or standard deviations/variances:

$$
r=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}}=\frac{1}{n-1} \sum_{i} \frac{\left(x_{i}-\bar{x}\right)}{s_{x}} \frac{\left(y_{i}-\bar{y}\right)}{s_{y}} .
$$

That makes it a fairly complicated number to calculate by hand. Once again, we will get the number using software. In R, you type cor (y), when x and y are vectors (with the same number of entries) whose correlation you seek.

- It is a dimensionless quantity-i.e., it has no units. It will not change if, say, your x-values are converted from inches to feet, or the like.
- It is fairly sensitive to outliers. See applet at

```
http://www.stat.sc.edu/~west/javahtml/Regression.html
```

Q: What is wrong with this statement? "There is a strong correlation between length of stay in a job and whether you are married or not."

Play the correlation game.

Q: True or False. In the presence of two quantitative variables, is a 0 correlation the mark of no association?
Follow up: What is?

More scatter plotting

- spruce data: Di.change ~ Ht. change
add color for Fertilizer
lm (Di .change \sim Ht. change, data $=$ spruce)
- draft data: N69 ~ nday

Review features of a line $y=$ intercept + slope * x

- intercept
- slope
meaning
least-squares regression: \hat $\mathrm{y}=\mathrm{a}+\mathrm{bx}$
- identify slope as b, intercept as a
- offers a "prediction" to value of y for given x
- observed y vs. fitted/predicted \backslash hat y-value
residual = observed - predicted
straight-line distance
positive if data point is above line, negative if below
- how data is used to choose a, b
want to make overall measure of residuals as small as possible might add up residuals and try to make sum small
sum ri does not prove to be effective
two alternatives:
sum $\left|r_{-} i\right|$
sum $r_{-} i^{\wedge}$ 2 better setup for calculus to take over and produce
b = r sty / s_x
a = bar - b xbar
- use app, have groups make guesses

