Stat 145, Fri 17-Sep-2021 -- Fri 17-Sep-2021
Biostatistics
Spring 2021

Friday, September 17th 2021

Wk 3, Fr
Topic:: least-squares regression
Read:: Lock 2.6
HW: WW Descriptive due Tues.

$$
\begin{aligned}
& \ln \text { is for } \\
& \text { "inneer model" }
\end{aligned}
$$

Regression wrap-up

- R specifics
$\operatorname{lm}(r e s p o n s e V a r ~ \sim ~ e x p l n a t o r y V a r, ~ d a t a ~=~<d a t a F r a m e N a m e>) ~$
Try $\operatorname{lm}($ waiting \sim eruptions, data $=$ faithful)
can store the output/results
learn
myLMResults <- lm(respVar ~ explVar)
$b_{0}=33.47$
predicted/fitted values are available in your output
$b_{1}=10.73$ myLMResults\$fitted.values
residuals are also available in that output
myLMResults\$residuals
- import and use of regression line meaning of slope, intercept prediction of response from explanatory value extrapolation vs. interpolation

From faithful example above

$$
\text { predicted } \overbrace{\text { waiting }}=33.47+(10.73) \text { (eruptions) }
$$

$\rightarrow \operatorname{head}($ faithful $)$
shows $1^{\text {st }}$ eruption 3.6 mins followed by waiting time 79 (observed y.)
The predicted waiting time at 3.6 mins in

$$
\hat{y}_{1}=33.47+(10.73)(3.6)=72.098
$$

The residual for the $1^{\text {st }}$ eruption:

$$
\text { residual } \# 1=y_{1}-\hat{y}_{1}=79-72.098=6.902 \text {. }
$$

Least-squares regression activity

Connect to our Microsoft Teams course. A copy of this document appears in the Files tab of the "Class activity log" channel. Use the Posts tab of the same channel to ask questions, or to browse and comment in the threads already started by others.

Working in groups of 2-3, complete the following tasks and answer the questions. We will go over answers in class, so record your responses to discuss later. This can be within R Markdown, if you like, but it is not required.

1. Display the first few lines of the data frame called cars. This is a builtin data set; you will not need to import it.
2. Decide on a quantitative variable to take role of explanatory variable: spend (resp. dist)
3. Working with the cars data frame, determine,
(a) the mean and standard deviation for each quantitative variable,
(b) the correlation between quantitative variables

4. Use the formulas

$$
b_{1}=r \frac{s_{y}}{s_{x}}, \quad b_{0}=\bar{y}-b_{1} \bar{x}
$$

to calculate slope b_{1} and intercept b_{0}. Verify that the $\operatorname{lm}()$ command produces these same numbers.
5. State a useful way to think about/interpret your slope. - dist to stop increases appose. 3.93
6. Produce a scatter plot of the data in cars, along with regression line
7. What are the values of the variables for the point with the largest dist? Find the residual for that point. Filter that point out of the data, and use $\operatorname{lm}()$ to recompute the slope b_{1} and intercept b_{0}. Did these seem to change much with the point omitted?
8. Above you have calculated each of

- mean and standard deviation for both variables,
- correlation,
- slope, intercept of regression line.

Do any of these change when the variables exchange roles (the one you had considered your explanatory variable becomes the response, and vice versa)? Which ones?
9. Given the points

$$
(31,37),(22,56),(15,68),(25,60),(35,41),
$$

make a scatterplot, and find the correlation and equation of the least-squares regression line. Is there a positive association between values? Negative association? Is the association reasonably linear? Is predicting the y-value at $x=42$ an example of interpolation or extrapolation?
$3(b)$

$$
\begin{gathered}
>\operatorname{cor}(\text { dist } \sim \text { speed, data }=\text { cars }) \\
0.807=r
\end{gathered}
$$

4. $\quad b_{1}=r \cdot \frac{s_{y}}{s_{x}}=(0.807) \frac{25.77}{5.29}=3.93$

$$
\begin{aligned}
& b_{0}=\bar{y}-b_{1} \bar{x}=42.98-(3.93)(15.4)=y \text {-intept. } \\
& \operatorname{lm}(\text { dist } \sim \text { speed, data }=\text { cars })
\end{aligned}
$$

6. $g f_{\text {_point }}($ dist \sim speed, data $=$ cars $) \quad \%>\% \quad g f-\ln _{m}\left(t_{y p e}=" \operatorname{lm} "\right)$
7. $\operatorname{lm}($ dist \sim speed, data $=$ filter (cars, dist $<115))$
residual for our filtered point
*49 is the case
its dist was 120; y
its predicted dist. is: $\quad 3.93(24)-17.579=76.74(\hat{y})$

$$
\text { residual }=120=y-\hat{y}=120-76.74=43.26 .
$$

9.

$\frac{x}{31}$	$\frac{y}{37}$	
22	56	
15	68	gf_point $(c(37,56,68,60,41) \sim$
25	60	$c(31,22,15,25,35))$
35	41	cor

