Stat 145, Wed 22-Sep-2021 -- Wed 22-Sep-2021
Biostatistics
Spring 2021

Wednesday, September 22nd 2021

Due:: Quiz Ch. 2 ends at 10 pm

Wednesday, September 22nd 2021

Wk 4, We
Topic:: Confidence intervals
Read:: Lock 3.2

From activity yesterday:

- For any fixed quantitative population variable, there is a different sampling distribution for the sample mean x-bar for each fixed sample size n. As n increases, these sampling distributions change predictably
- they shrink in their spread (SE \downarrow)
- they look more symmetric bell-shaped (if they didn't already)
- mean of sampling dist. always matches μ (mean of population).
- As n increases, the standard error of x-bar ...

$$
S E_{\bar{x}} \text { shrinks }
$$

$$
\begin{aligned}
i . i . d .= & \text { independent } \\
& \text { and identically } \\
& d \text { istribated }
\end{aligned}
$$

- When the sample size n corresponds to a relatively large portion
of the overall population size, there can be a noticeable, if not always overly large, difference between sampling distributions for x-bar obtained via SRS samples and those obtained as i.i.d. samples. The one with the larger standard error is ...

$$
\text { the sampling dist. when taking iii, } 1 \text { samples (w/replacement) }
$$

Sampling distributions for

- simulation requires repeatedly sampling from full population sampling method: SRS vs. i.i.d.
- means
centered on the population mean mu become increasingly normal (they may be already) as n grows applets
today \longrightarrow https://shiny.calvin.edu:3838/scofield/cltMeans/ http://www.lock5stat.com/StatKey/index.html spread (SE) shrinks as n grows
- proportions binary categorical variable
proportion arises from looking for one of two values as a "success" applets
$\begin{aligned} \text { tolay } & \longrightarrow \text { https://www.rossmanchance.com/applets/2021/oneprop/OneProp.htm?candy=1 } \\ \text { Monday } & \longrightarrow \text { https://shiny.calvin.edu:3838/scofield/cltProportions/ }\end{aligned} \quad \begin{aligned} & \text { http://www.lock5stat.com/StatKey/index.html } \\ & \text { become increasingly normal as n grows } \\ & \text { spread (SE) shrinks as } \mathrm{n} \text { grows }\end{aligned}$

Normal distributions

- Sampling distributions for sample means/proportions tend to look "normal" truer when sample size n is large
- Normal distribution calculator from StatKey
- 68-95-99.7\% rule

In particular,
about 95% of values of p-hat lie within 2 standard deviations of p that is, inside [p-2 SE, p + 2 SE]
about 95% of values of x -bar lie within 2 standard deviations of mu that is, inside [mu - $2 \mathrm{SE}, \mathrm{mu}+2 \mathrm{SE}]$
call the amount added/subtracted the "margin of error" for 95\% coverage

Q1: Use the Normal distribution calculator app from StatKey to
(a) Plot a Normal distribution with mean 100 and std dev 20.
(b) Find rel. freq of values from this distribution between 90 and 110

What is the Z-score of 110 ?
(c) Find rel. freq of values from this distribution between 80 and 120 What is the Z -score of 80 ?
(d) Find rel. freq of values from this distribution between 60 and 140 What is the Z-score of 140 ?
(e) Find rel. freq of values from this distribution between 40 and 160 What is the Z-score of 40 ?

Q2: Say that a company fills its packages to an avg of 48 Kg with sd 2 Kg .
(a) Plot a Normal distribution with these parameters
(b) Find rel. freq of values from this distribution between 47 and 49 What is the Z-score of 49 ?
(c) Find rel. freq of values from this distribution between 46 and 50 What is the Z-score of 46 ?
(d) Find rel. freq of values from this distribution between 44 and 52 What is the Z -score of 52 ?
(e) Find rel. freq of values from this distribution between 42 and 54 What is the Z -score of 42 ?

Idea of a 95\% CI (Centered-interval construction method)

- get an estimate for population parameter
in case of mu (quant var), use x-bar
in case of p (binary categorical var), use p-hat
- get an estimate for margin of error (ME) for 95\% coverage
most likely this involves estimating SE and doubling it
- construct centered interval

Q3: SE for 95% coverage is approximately $2 *$ ME.
How should you get SE for
99.7% coverage?
68\% coverage?
100% coverage?
90% coverage?

