```
Stat 145, Fri 24-Sep-2021 -- Fri 24-Sep-2021
```

Biostatistics
Spring 2021

Friday, September 24th 2021

Wk 4, Fr
Topic:: 95 percent confidence intervals
Topic:: Estimating SE using bootstrapping
Read:: Lock5 3.3

CI construction: 95\%

- goal: to estimate population parameter frequently: mu, p, mu_1 - mu_2, p_1 - p_2
Why? We already have unbiased estimators (sample statistics)
mu: $\quad x$-bar
$\mathrm{p}: \quad \mathrm{p}$-hat
mu_1 - mu_2: x-bar_1 - x-bar_2
p_1 - p_2: p-hat_1 - p-hat_2
- How:

1. centered interval approach
take estimate +/- (2) (SE)
$2 *$ SE is called the margin of error (specific to 95% confidence)
2. percentile approach (must await discussion of bootstrapping)

- Meaning of CI

Note the three misinterpretations the Locks want you to avoid, pp. 187-88

- Example:

Belief	Females	Males
There isn't one true love	1005	807
There is one true love	363	372
Undecided	34	44

If $\mathrm{SE}=.018$, find 95% CI for difference in proportion who disagree

Confidence Intervals
Goal: Estimate

Always of
$\frac{\text { Have estimators (sample states) }}{\frac{8}{8}}$
\bar{x}
\hat{p}
r
r
b
(pip porto.)
p. (pip. candida)
β_{1} (pop slope)
$=\mu_{1}-\mu_{2}$
$p-p_{2}$

Ex. New setting
Samples of men and women shew any wally screen time (hrs)

$$
\begin{aligned}
\bar{x}_{w} & =35.2 \\
\bar{x}_{m} & =61.4 \\
\int E_{\bar{x}_{n}-\bar{x}_{u}} & =17
\end{aligned}
$$

A 95%, CI for $\mu_{w}-\mu_{w}$
estimate: $\bar{x}_{n}-\bar{x}_{w}=6.1 .4-35.2$

$$
\begin{aligned}
\bar{x}_{n}-\bar{x}_{w} & =61.4-35.2 \\
& =26.2
\end{aligned}
$$

$(-7.8,60.2)$

$$
\frac{-2(17)+2(17)}{\bar{x}_{4}-\bar{x}}
$$

proportion of disagrees
Females: $\hat{P}_{F}=\frac{1005}{1402}$
Males $-\hat{p}_{M}=\frac{\frac{807}{1223}}{\frac{1005}{1402}-\frac{107}{1223}}$

95\% Confidence Intervals -

Estimating SE using bootstrapping

Ex. 1) Have poll saying 42\% of Americans favor proposal A. (p hat) Say that SE $=0.016$ Give a $95 \% \mathrm{Cl}$ for P (population proportion) $0.42-2(0.016)=0.388=$ lower bound $0.42+2(0.016)=0.452=$ upper bound

Ex. 2) New Setting
Samples of men and women show average weekly screen time (hrs)

$$
x_{w}=35.2
$$

$$
X_{m}=61.4
$$

A 95\% CI for $\mu_{m}-\mu_{w}$
Estimate: $X_{m}-X_{w}=61.4-35.2=26.2$
(-7.8, 60.2)
Ex. 3) Proportion of Disagreers

