

Have taken
sample stat pointestimate of someparameter p for p
had SE

calculated

margin of error Ifor95 7 ME 2 SE

Obtainel boundaries

lower p ME

upper p ME p ME p ME

Task
Using sampled Ita changesfromsample to sample

Next time your gf is different

Estimating a non moving target p
Once we have our CI perhaps 0.23 0.31 we might

say The procedure I used to construct this CI succeeds

in capturing the populationparameter 95 of true

Introduction to Bootstrapping

Thomas Scofield

September 24, 2021

The context

There is a population parameter we seek. Perhaps it is the average weight µ for people in America. For the
moment, let’s take our population to be the people in the NHANES dataset over the age of 17.
myPopulation <- filter(NHANES, Age > 17 & Weight > 0)
nrow(myPopulation)

[1] 7420

We see there are 7420 (out of the original 10000) cases that made it through our filter. Let’s look at the
distribution of Weight as well as the population mean µ:
gf_dhistogram(~Weight, data=myPopulation)

0.000

0.005

0.010

0.015

0.020

50 100 150 200
Weight

de
ns
ity

mean(~Weight, data=myPopulation)

[1] 82.00212

The distribution is somewhat right-skewed, and has population mean µ = 82.0 (in Kg). I will now make
a container for weights called purpleBag, evoking the image that we have written the weights of all 7420
members of the population on individual slips of paper and placed them in a purple (purple for population)
bag.
purpleBag <- myPopulation$Weight

Let’s draw an SRS of n = 50 weights from the population (purple bag) of weights. As I will use this sample
several times, I will name it orangeBag (orange for original sample).
orangeBag <- sample(purpleBag, size=50)
orangeBag # displays contents of list orangeBag

[1] 99.6 68.4 98.8 83.8 97.3 83.8 93.5 106.5 83.8 86.8 136.3 161.5

1

Exam Content

1 I I 3
2 I 2.6

27 3 I 3.2
Friday

[13] 82.8 55.9 88.7 105.2 77.9 98.5 62.3 78.1 66.1 82.8 68.7 86.1
[25] 86.2 97.7 56.3 70.8 68.0 72.5 51.5 112.0 100.4 53.0 70.1 121.5
[37] 93.9 100.0 70.2 91.2 113.7 65.4 72.4 119.7 83.5 92.9 96.8 81.9
[49] 61.8 89.8

mean(orangeBag)

[1] 86.928

The mean of the sample in this bag is calculated here. As this is the mean of the original sample, let’s call it
originalXbar:
originalXbar <- mean(orangeBag)

Note that it does not equal µ = 82.0. It rarely does. If we want to know how often a sample mean di�ers by
this much from µ, that can be assessed by looking at the sampling distribution of x for random samples of
size n = 50 taken from this population.

Aside 1: Sampling distributions using SRS and i.i.d. samples

We proceed as in our sampling distribution activity Tuesday. As we have drawn one random sample of size
n = 50 from the purpleBag and computed x, so now we do it many times. Our original sample was an SRS,
so it seems we should carry out the process as similarly as possible.
samplingDistSRS <- do(5000) * mean(sample(purpleBag, size=50))
head(samplingDistSRS)

mean
1 78.290
2 84.208
3 79.064
4 80.162
5 75.814
6 82.012

At this stage, note that we might have drawn i.i.d. samples, instead. I will do so here.
samplingDistIID <- do(5000) * mean(sample(purpleBag, size=50, replace=TRUE))
head(samplingDistIID)

mean
1 85.014
2 81.158
3 84.674
4 79.606
5 77.106
6 75.254

Of course, you can expect to see any di�erence between the two simply by looking at the first few rows of
each! Below, I produce density plots of the two for comparison. Now, can you see a di�erence?
p1 <- gf_density(~mean, data=samplingDistSRS) %>%

gf_labs(title = "Sampling distribution of x-bar, n=50, SRS") %>%
gf_refine(scale_x_continuous(limits=c(60,100)))

p2 <- gf_density(~mean, data=samplingDistIID) %>%
gf_labs(title = "Sampling distribution of x-bar, n=50, i.i.d.") %>%
gf_refine(scale_x_continuous(limits=c(60,100)))

grid.arrange(p1, p2, nrow=2)

2

SE SE SE SE But SE
p I

I 86.93 d

0.00

0.05

0.10

60 70 80 90 100
mean

de
ns

ity
Sampling distribution of x−bar, n=50, SRS

0.00

0.05

0.10

60 70 80 90 100
mean

de
ns

ity

Sampling distribution of x−bar, n=50, i.i.d.

How about looking at the means (technically the mean of a distribution of means)?
mean(~mean, data=samplingDistSRS)

[1] 81.97264

mean(~mean, data=samplingDistIID)

[1] 82.01404

Given our previous work with sampling distributions, it should not be surprising that both are centered
almost exactly at µ, and that they appear symmetric, bell-shaped. What may be surprising is how little
di�erence there is between repeatedly sampling with replacement vs. doing so without replacement. The
reason for this is the relatively small size of our samples (n = 50) in comparison to the size of our population
(7420).

Aside 2: A 95% confidence interval for µ

What we might do, at this point, is calculate the standard error, which as we observed is about the same
regardless of whether we compute it from the sampling distribution for SRS or for i.i.d. samples. Here it is
from the distribution of x using i.i.d. random samples of size n = 50.
sd(~mean, data=samplingDistIID)

[1] 2.996611

3

fivesampleswoutreplacement

Nearly identical

since sample site

n is insignificant
compared to ther
size ofthepopulation

sampleswithreplacement

stderror 3

Our point estimate for µ is x = 86.928 from the original sample. To build a 95% CI for µ we compute the
margin of error (twice the standard error), then add/subtract it from our original sample mean:
marginOfError <- 2 * sd(~mean, data=samplingDistIID)
originalXbar + c(-1,1) * marginOfError

[1] 80.93478 92.92122

There it is, our 95% CI is (80.93, 92.92). It is always possible the population parameter is not contained
inside the confidence interval, but we know it is this time, since µ = 82.0.

But wait! Isn’t this all rather silly? We built a confidence interval in the e�ort to estimate µ, when we
already knew it by direct calculation from the population! Let’s now make the situation more realistic.

Bootstrapping

It is realistic to obtain a sample sample from the population (purpleBag) like the one we have in orangeBag.

It is not realistic for us to go back to the population several thousand times to draw more samples like the
one in orangeBag. The implications of this include

• losing the ability to view the sampling distribution
• losing the ability to calculate SEx.

One idea for dealing with this problem had to await the rise of modern computers; it is known as bootstrap-

ping. What we do is draw several thousand bootstrap samples, as they are called, not from purpleBag,
but from orangeBag. As before, the size of each sample must match that of the original sample. In our
current setting, they must be drawn with replacement (like an i.i.d. sample) in order to provide a variety of
results. Given our work above, we can get one bootstrap sample like this:
resample(orangeBag) # or, alternatively, sample(orangeBag, replace=TRUE)

[1] 66.1 62.3 83.8 96.8 86.1 65.4 83.8 83.8 98.5 99.6 92.9 113.7
[13] 96.8 86.2 82.8 92.9 93.5 97.7 55.9 136.3 78.1 81.9 78.1 91.2
[25] 72.4 70.2 121.5 65.4 119.7 81.9 86.2 55.9 83.5 98.8 89.8 77.9
[37] 68.0 82.8 98.5 161.5 86.8 72.5 86.1 83.5 51.5 70.8 68.7 68.7
[49] 62.3 65.4

We use a bootstrap sample such as this to compute a bootstrap statistic, in this case a mean.
mean(resample(orangeBag))

[1] 86.818

When we repeat this process over and over, the collection of means produces what we call a bootstrap

distribution.
bootstrapDistMeans <- do(5000) * mean(resample(orangeBag))
head(bootstrapDistMeans)

mean
1 90.374
2 82.488
3 89.398
4 90.420
5 90.894
6 88.228

Let’s look at this distribution, and compare it with the sampling distribution we viewed before.

4

EEp I
I 86.93 I

p3 <- gf_density(~mean, data=bootstrapDistMeans) %>%
gf_labs(title = "Bootstrap distribution of x-bar") %>%
gf_refine(scale_x_continuous(limits=c(60,100)))

grid.arrange(p1, p3, nrow=2)

0.00

0.05

0.10

60 70 80 90 100
mean

de
ns

ity

Sampling distribution of x−bar, n=50, SRS

0.00

0.05

0.10

60 70 80 90 100
mean

de
ns

ity

Bootstrap distribution of x−bar

The two are similar, but not identical, as
borne out by favstats():
favstats(~mean, data=samplingDistIID)

min Q1 median Q3 max mean sd n missing
72.36 79.923 82.006 83.994 94.33 82.01404 2.996611 5000 0

favstats(~mean, data=bootstrapDistMeans)

min Q1 median Q3 max mean sd n missing
77.346 84.89 86.89 88.905 99.346 86.94828 2.987145 5000 0

Note they have di�erent means. The center of the sampling distribution is almost exactly µ, reflecting that x
is an unbiased estimator of µ. The center of the bootstrap distribution is almost exactly x = 86.928, the
mean of our original sample (i.e., the mean of values in orangeBag). When you think about it, that isn’t so
surprising, given that every bootstrap sample was drawn from orangeBag.

But though these distributions are centered at di�erent places, they have approximately the same spreads. In
the results above, the standard error (sd from the sampling distribution) is SEx = 2.997. The sd from the
bootstrap distribution is 2.987. While the two numbers are not always this close to each other, the reason for
bootstrapping is precisely so we can use its sd to approximate the standard error.

5

repeatedfromabove given
hereforcomparison'ssake

You try it

The Lock5 dataset CommuteAtlanta contains variables related to travel times for 500 people who work in
Atlanta, Georgia. This is a sample, already drawn for you from a larger population of commuters working in
Atlanta. So treat the Distance variable like orangeBag. Without access to the larger population, we cannot
obtain the parameter µ. Instead, use bootstrapping to find an approximately 95% confidence interval for µ.

Once you have achieved this, visit the StatKey website. From the apps listed there, select “CI for Single
Mean, Median, St.Dev.” in the “Bootstrap Confidence Intervals” column. In the top left there is a drop-down
menu that has “Mustang Price” pre-selected. Use it to select “Atlanta Commute (Distance)”. Try your hand
at generating a bootstrap distribution and producing a point estimate and standard error that could be used
to build a 95% confidence interval like you have just done using RStudio.

6

Trythis fixedfromwhat I wroteon the
boardduringclass

bootstrapDist c do3000 resample commuteAtlanta Distance

farstats mean data bootstrapDist
use Sd as the approximate SE

meant Distance data CommuteAtlanta

this computes the mean I oftheoriginal sample
whichshouldbe aboutthesame as the mean of
the bootstrapdistribution reportedby favstats

