Stat 145, Mon 4-Oct-2021 -- Mon 4-Oct-2021

$$
\begin{aligned}
& \text { Null distribution = sampling dist. } \\
& \text { for your sample statistic } \\
& \text { in world where Ho holds true. }
\end{aligned}
$$

Monday, October 4th 2021

Wk 6, Mo
Topic:: Hypothesis test intro
Read:: Lock 4.1
HW:: Yodle Quiz Ch. 3 ends Wed.

R syntax observations:

- only a few of commands we've seen operate directly on data frames now()
head()
names()
$\operatorname{dim}()$
with(), filter() (both of these need extra stuff)

Hypothesis test

- another inference procedure
- idea cultivated using single proportion
multiple choice test, 5 answers available
let $\mathrm{p}=$ proportion (in population) that have correct answer B
you'd expect $\mathrm{p}=1 / 5$ (null hypothesis)
data from a sample of questions used to assess strength of evidence against

Say, in 40 questions, 10 have B for correct answer
this provides sample data
identify possible sample statistics

- construction of approximate null distribution
null distribution is a special case of sampling distribution assumes null hypothesis is true
for univariate data (phat or x -bar), it is similar to bootstrapping not actually null dist; Lock's call it a "randomization distribution" slips in bag are given proportion equal to value in null hypothesis
- example of doing this using R
nullDistPhat <- do (5000) * rflip(40, prob=.2)
gf_density(~prop, data=nullDistPhat)
nrow (filter (nullDistPhat, prop >= .25))
counts the number of dots in right tail out at/beyond phat=0.25
divide this by 5000 and double it to get P -value

Statistical significance

- corresponds to having a result that is unlikely under null hypothesis

Another example: mean body temperature

Hypothesis testing
General Framework:

1. State hypotheses
2. Collect data, compute test statistic
3. Construct apposesmate null distribution

Locate your fest stat. on that distribution
Compute how frequently something as extreme as your test statistic arises (P-value)
4. Draw a conclusion (Is it statistically significant or not?)

Examples from yesterday: Univariäte

1. Catyorical data - answers $A-E$ to multiple choice questions Focused on B as correct answer (yes/no)
(i) Hypotheses: $\quad H_{0}: p=1 / 5=0.2$

$$
H_{a}: p \neq 1 / 5
$$

(ii) Gather data (sample)

$$
n=40 \text {, get that } B \text { is correct } \hat{p}=10 / 40=0.25
$$

(iii) Construct approx null dist.

RStudio: $\quad \operatorname{rflsp}(40, p=0.2)$
So as to be sampling from world where H_{0} holds

$P_{\text {-value }} \sim 0.52$
Not statistically significant Looks consistent w/ Ho.

Predetermined level α
typical values are $\alpha=0.1,0.05,0.01$
Select it prior to gathering data, agreeing to reject H_{0} if your P-value is below α
Otherwise, say "we fail to reject H_{0}.
2. Body turps
(i)

$$
\begin{aligned}
& H_{0}: \mu=98.6 \\
& H_{a}: \mu+98.6
\end{aligned}
$$

(ii) data $n=50, \bar{x}=98.26$
(iii) Construct approx. null dist.

One side amounts to 0.00005
$\rightarrow P$-value is $2(0.00005)=0.0001$

Bivariate scenarios
Is there a differmen in mean number of finger taps
(i)

$$
\begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=0 \\
& H_{a}: \mu_{1}-\mu_{2}>0
\end{aligned}
$$

