Usual situation for vandonization distribution hypothesis test

Stat 145, Fri 8-Oct-2021 -- Fri 8-Oct-2021 **Biostatistics** Spring 2021 Veleria, Jeffrey, Lauren, Jusinh _____ Friday, October 8th 2021 _____ Wk 6, Fr Topic:: Randomization distributions Topic:: Matched pairs data Read:: Lock5 4.4 PS08 { look for green entries in calendar to come HW((HW((Some homework hints: - How to understand the data given in Problem 4.54 - How to understand the data given in Problem 4.63 the nature of one-sided alternative hypotheses and their P-values - How to understand the data given in Problem 4.64 asymmetric null distributions, and the policy of doubling one tail Hypotheses tests involving bivariate data - nature of data when looking at the difference of two independent (i.e., not matched pairs) group means Calture: Mc, Xc computed from sample of afterne Placebo: Mp, Xp " placebo 248 Conflina 242 Placebo Ho: Mc-Mp=0 $H_a: p_c - \mu_p > 0$ the difference of two (independent) group proportions Answer Sex $H_0: P_m - P_F = 0$ No F Ha: Pm-PF 70 F Yes M Yes Yes M test stat pm-pr No M

	slope/c	orrelation	for linear	relationship o	of tw	<i>v</i> o quant vars		
		PPm(x)	Pricely)	-	1.:	either $p=0$	٥٢	B. = 0
	-	2.7	79	1	ه ۱۰			1.
R	Л	3.4	299		μα.	ρνο		
		2.8	199					
	Rela							
PPM slips	1 slips							

- how randomization samples in cases mentioned above are carried out so (p.266)
 - 1. we are consistent with the null hypothesis
 - Most important indicator of this: that its mean is the null value
 - 2. we use only data from the original sample
 - 3. we reflect the way the data were collected.

Mental models for what is being done: two bags, slips drawn without replacement, building new pairings

two decks of cards, one shuffled

Note: These bivariate hypothesis tests are firsts of sampling w/o replacement

- See Farthur South for more on between "metched pairs" and "Z independent samples" The distinction between "metched pairs" and "Z independent samples" Ho: Moiff = O VS. Ha: Moiff = O (2-sided) Exception: matched pairs - null and alternative hypotheses

talk about "mean difference" as opposed to "difference of means"

- do like univariate quantitative case

first compute "column" of differences (only relevant variable henceforward) take a bootstrap dist., then translate it so centered at ${\tt 0}$

Two independent samples vs. matched pairs

Consider this research question: Is it better to fish a certain lake from shore, or from a boat?

Our response variable will be quantitative, the ratio of fishing hours to fish caught. Here is some data.

month	Apr.	May	June	July	Aug.	Sept.	Oct.
shore	3.3	3.6	3.9	3.2	3.0	1.8	1.6
boat	3.8	3.0	3.3	2.2	1.6	1.4	1.5

We have a binary categorical explanatory variable: "Where fishing from?", with values "shore" and "boat". We have a quantitative response variable. We have bootstrapped and tested hypotheses for the difference $\mu_1 - \mu_2$, but the methods I've discussed have presumed *independent samples*. The data collected to investigate the question do not represent independent samples. The responses in the different months are naturally related: when one goes up, the other seems more likely to go up, both being related to the population of fish in the lake during that month. This data is **matched pairs** data, and we should:

• use the months as *cases*, and produce for each case a single difference:

month	Apr.	May	June	July	Aug.	Sept.	Oct.
shore	3.3	3.6	3.9	3.2	3.0	1.8	1.6
boat	3.8	3.0	3.3	2.2	1.6	1.4	1.5
difference	-0.5	0.6	0.6	1.0	1.4	0.4	0.1

• Proceed as if in a "single mean" setting. A confidence interval would be for the purpose of estimating the mean difference μ_{diff} . An hypothesis test would focus on hypotheses:

$$\mathbf{H}_0: \mu_{\text{diff}} = 0$$
 vs. $\mathbf{H}_0: \mu_{\text{diff}} \neq 0.$

Either way, the slips of paper we would insert into a bag for bootstrapping or randomization would contain only the last set of numbers, the differences.

Practice: Does the data suggest independent samples, warranting analysis on the difference of two means $\mu_1 - \mu_2$, or is it matched pairs?

1. A study was conducted to investigate the effectiveness of hypnotism in reducing pain. Results for randomly selected subjects are shown in the table below. A lower score indicates less pain.

subject	Α	В	С	D	Е	F	G	Η
before	6.6	6.5	9.0	10.3	11.3	8.1	6.3	11.6
after	6.8	2.4	7.4	8.5	8.1	6.1	3.4	2.0

2. To study the effects of a drug on blood pressure, patients had a base reading taken of their diastolic blood pressure. After 3 weeks on the medication, new readings of their diastolic blood pressures were taken.

3. A collection of statistics students is randomly assigned to two groups. One group is given a study regimen that includes listening to recordings of classical music by Mozart, while the other group must study in silence. The response variable is student scores on an exam.