Usual situation for randomization distribution hypothesis test

locate your test statistic
Determining your P-value

locate your test statistic

1-sided, right-tailed alterative

$$
H_{a}: \text { param. }>\underset{\text { value }}{\text { null }}
$$

locate your test statistic

1-sided, left-tailed alternative

$$
H_{a}: \text { pram. }<\underset{\substack{\text { null } \\ \text { value }}}{ }
$$

$\Rightarrow P$-value is larger
4.63 than 0.5

Valeria, Jeffrey, Lauren, Josiah

Friday, October 8th 2021

Wk 6, Fr
Topic:: Randomization distributions
Topic:: Matched pairs data
Read:: Lock 4.4
$\left.\begin{array}{l}\text { HWC(PS08 } \\ H W C(\text { PS09 Ellenberg }\end{array}\right\}$ look for green entries in calendar fo come

Some homework hints:

- How to understand the data given in Problem 4.54
- How to understand the data given in Problem 4.63
the nature of one-sided alternative hypotheses and their P-values
- How to understand the data given in Problem 4.64 asymmetric null distributions, and the policy of doubling one tail

Hypotheses tests involving bivariate data

- nature of data when looking at
the difference of two independent (i.e., not matched pairs) group means

Bay ofrectmat slips the tap slips

Caffeine: μ_{c}, \bar{x}_{c} computed from sample of caffeine Placebo: μ_{p}, \bar{x}_{p}.. ". "placebo

$$
\begin{aligned}
& H_{0}: \mu_{c}-\mu_{p}=0 \\
& H_{a}: \mu_{c}-\mu_{p}>0
\end{aligned}
$$

the difference of two (independent) group proportions

sad

$\frac{\text { Sex }}{F}$		Answer
F		No
F		Yes
M		Yes
M		Yes
M		No
\vdots		

test stat $\hat{\rho}_{M}-\hat{p}_{F}$
slope/correlation for linear relationship of two quant vars

$$
\begin{aligned}
& H_{0} \text { : either } \rho=0 \text { or } \beta_{1}=0 \\
& H_{a}: \rho>0
\end{aligned}
$$

- how randomization samples in cases mentioned above are carried out so (p.266)

1. we are consistent with the null hypothesis

Most important indicator of this: that its mean is the null value
2. we use only data from the original sample
3. we reflect the way the data were collected.

Mental models for what is being done:
two bags, slips drawn without replacement, building new pairings
two decks of cards, one shuffled

Note: These bivariate hypothesis tests are firsts of sampling wo replacement

talk about "mean difference" as opposed to "difference of means"

$$
\mu_{\text {Diff }} \quad \mu_{1}-\mu_{2}
$$

- do like univariate quantitative case
first compute "column" of differences (only relevant variable henceforward) take a bootstrap dist., then translate it so centered at 0

Two independent samples vs. matched pairs

Consider this research question: Is it better to fish a certain lake from shore, or from a boat?
Our response variable will be quantitative, the ratio of fishing hours to fish caught. Here is some data.

month	Apr.	May	June	July	Aug.	Sept.	Oct.
shore	3.3	3.6	3.9	3.2	3.0	1.8	1.6
boat	3.8	3.0	3.3	2.2	1.6	1.4	1.5

We have a binary categorical explanatory variable: "Where fishing from?", with values "shore" and "boat". We have a quantitative response variable. We have bootstrapped and tested hypotheses for the difference $\mu_{1}-\mu_{2}$, but the methods I've discussed have presumed independent samples. The data collected to investigate the question do not represent independent samples. The responses in the different months are naturally related: when one goes up, the other seems more likely to go up, both being related to the population of fish in the lake during that month. This data is matched pairs data, and we should:

- use the months as cases, and produce for each case a single difference:

month	Apr.	May	June	July	Aug.	Sept.	Oct.
shore	3.3	3.6	3.9	3.2	3.0	1.8	1.6
boat	3.8	3.0	3.3	2.2	1.6	1.4	1.5
difference	-0.5	0.6	0.6	1.0	1.4	0.4	0.1

- Proceed as if in a "single mean" setting. A confidence interval would be for the purpose of estimating the mean difference $\mu_{\text {diff }}$. An hypothesis test would focus on hypotheses:

$$
\mathbf{H}_{0}: \mu_{\text {diff }}=0 \quad \text { vs. } \quad \mathbf{H}_{0}: \mu_{\text {diff }} \neq 0
$$

Either way, the slips of paper we would insert into a bag for bootstrapping or randomization would contain only the last set of numbers, the differences.

Practice: Does the data suggest independent samples, warranting analysis on the difference of two means $\mu_{1}-\mu_{2}$, or is it matched pairs?

1. A study was conducted to investigate the effectiveness of hypnotism in reducing pain. Results for randomly selected subjects are shown in the table below. A lower score indicates less pain.

subject	A	B	C	D	E	F	G	H
before	6.6	6.5	9.0	10.3	11.3	8.1	6.3	11.6
after	6.8	2.4	7.4	8.5	8.1	6.1	3.4	2.0

2. To study the effects of a drug on blood pressure, patients had a base reading taken of their diastolic blood pressure. After 3 weeks on the medication, new readings of their diastolic blood pressures were taken.
3. A collection of statistics students is randomly assigned to two groups. One group is given a study regimen that includes listening to recordings of classical music by Mozart, while the other group must study in silence. The response variable is student scores on an exam.
