MATH 143: Introduction to Probability and Statistics

Worksheet for Fri., Oct. 14: Normal Distribution

Practice using the standard normal table to find the following. In each case sketch the area that you are looking for under the standard normal curve drawn. (It is always a good idea to draw such a sketch, partly to remind yourself that probabilities correspond to areas, partly because the sketch can help you to figure out how to use the table correctly, and partly because it allows you to check visually whether your answer seems reasonable.)

1. The proportion of Z-values less than 0.68 -that is, $\operatorname{Pr}[Z<0.68]$. How about $\operatorname{Pr}[Z \leq 0.68]$?

$>\operatorname{pnorm}(0.68,0,1)$
[1] 0.7517478
2. $\operatorname{Pr}[Z>0.68]$

$>1-\operatorname{pnorm}(0.68,0,1)$
[1] 0. 2482522
3. $\operatorname{Pr}[Z<-1.38]$

$>\operatorname{pnorm}(-1.38,0,1)$
$[1] 0.08379332$
4. $\operatorname{Pr}[-1.38<Z<0.68]$

```
> pnorm(0.68) - pnorm(-1.38)
```

[1] 0.6679544
5. $\operatorname{Pr}[-3.81<Z<-1.38]$

$>\operatorname{pnorm}(-1.38)-\operatorname{pnorm}(-3.81)$
[1] 0.08372384
6. Find the value of k such that $\operatorname{Pr}[Z<k]=0.8997$.

$>\operatorname{qnorm}(0.8997,0,1)$
[1] 1.279844
7. Find Q1 and Q3 (the $1^{\text {st }}$ and $3^{\text {rd }}$ quartiles) for the standard normal distribution.
$>$ qnorm(0.25)
[1] -0.6744898
$>$ qnorm(0.75)
[1] 0.6744898

The Empirical Rule. Let us continue to use Z to denote a variable with a standard normal distribution. Use the table of standard normal probabilities to find:
8. $\operatorname{Pr}[-1<Z<1]$
$>$ pnorm(1) - pnorm(-1)
[1] 0.6826895
9. $\operatorname{Pr}[-2<Z<2]$
$>$ pnorm(2) - pnorm(-2)
[1] 0.9544997
10. $\operatorname{Pr}[-3<Z<3]$
$>$ pnorm(3) - pnorm(-3)
[1] 0.9973002

Critical Values. Now use the table of standard normal probabilities "in reverse" to find as accurately as possible the values of z^{*} satisfying:
11. $\operatorname{Pr}\left[Z>z^{*}\right]=0.10$
$>$ qnorm(0.9)
[1] 1.281552
12. $\operatorname{Pr}\left[Z>z^{*}\right]=0.05$
> qnorm(0.95)
[1] 1.644854
13. $\operatorname{Pr}\left[Z>z^{*}\right]=0.01$
> qnorm(0.99)
[1] 2.326348
14. $\operatorname{Pr}\left[Z>Z^{*}\right]=0.001$
$>$ qnorm(0.999)
[1] 3.090232

Package Weights. Suppose that the wrapper of a candy bar lists its weight as 8 ounces. The actual weights of individual candy bars naturally vary to some extent, however. Suppose that these actual weights vary according to a normal distribution with mean $\mu=8.3$ ounces and standard deviation $\sigma=0.125$ ounces.
15. What proportion of the candy bars weigh less than the advertized 8 ounces?
$>\operatorname{pnorm}(8,8.3,0.125)$
[1] 0.008197536
16. What proportion of the candy bars weigh more than 8.5 ounces?
> 1 - pnorm(8.5, 8.3, 0.125)
[1] 0.05479929
> pnorm(8.5, 8.3, 0.125, lower.tail = F)
[1] 0.05479929
17. What is the weight such that only 1 candy bar in 1000 weighs less than that amount?
$>$ qnorm(0.001, 8.3, 0.125)
[1] 7.913721
18. If the manufacturer wants to adjust the production process so that only 1 candy bar in 1000 weights less than the advertised weight, what should the mean of the actual weights be (assuming that the standard deviation of the weights remains 0.125 ounces)?
>8 - qnorm(0.001, 0, 1) * 0.125
[1] 8.386279
19. If the manufacturer wants to adjust the production process so that the mean remains at 8.3 ounces but only 1 candy bar in 1000 weighs less than the advertised weight, how small does the standard deviation of the weights need to be?

```
> (8 - 8.3)/qnorm(0.001, 0, 1)
```

[1] 0.09708008

