Several facts about questitutive vers.
1. If X, Y are questiver and X has a mean
$$\mu_X$$
, Y has a
mean μ_X , then their sum X+Y has mean $\mu_X + \mu_Y$.
Their difference X-Y has mean $\mu_X - \mu_Y$.
EX.) If you're a golfer and average 91 strokes on course
A and 83 strokes on course B. If you play
lette courses on one day, and take
 $X = your score on course A$
 $Y = " " " B$
then
average sum X+Y will be $\mu_X + \mu_Y = 91+83 = 174$
" difference X-Y " " $\mu_X - \mu_Y = 91-83 = 8$.
2. If X,Y are integrated and X has a S.d. T_X , Y has a standard
deviation σ_Y , then both
 $X+Y$ have standard deviction $\sqrt{\sigma_X^2 + \sigma_Y^2}$.
 T_X

Exil Seg larea is a body whose scares have
mean
$$\mu = 161$$

Sd. $\sigma = 14$
Loura boots two genes closely her surres
 $X_1 = scare in 157$
 $X_2 = v - 2v^2$
Kenu
 $S = X_1 + X_2$ has mean $161 + 161 = 322$
 $11 \quad Sd. \quad \sqrt{14^2 + 14^2} = \sqrt{2}(44)^2 = 14\sqrt{2}$
If she bould 3 genes, then her summed/total scare
 $X_1 + X_2 + X_3$ has mean $= 3\mu = 3(161)$
 $Sd. = \sqrt{14^2 + 14^2} = 14\sqrt{3}$.
Corollery to 2:
 $Tf X_1, X_2, \dots, X_n$ is an i.i.d. sample from a population
with mean μ_1 , s.d. σ_1 then the
a) mean for the sum: $n\mu_1$, Sd. for sum: $\sigma\sqrt{n}$
b) mean for $\frac{1}{n}(X_1 + X_2 + \dots + X_n)$ (i.e., the mean for
the sample mean \overline{X})
 $\mu_{\overline{X}} = \mu$ (sample means are unbiased oftimators
and the Sd. $d\overline{X}$

3,

Ex.]
If Laure bould 3 games, expect her average of the three

$$\overline{X} = \frac{1}{3} (X_1 + X_2 + X_3)$$

to have a distribution with mean 161 and s.d. $\frac{14}{13}$
IF she bould 20 games, then her average
 $\overline{X} = \frac{1}{20} (X_1 + X_2 + \dots + X_{20})$
will have mean = 161 and s.d. $\frac{14}{120}$.

Central himit Theorem:
(1) The sum of X, ..., Xn (i.i.d. sample from quantifictive population)
has an approximate normal distribution for large anough n
(and given what we learned above, that normal dist. will
have mean npm and s.d.
$$T_{X} Tn$$
).
2) The average $\frac{1}{2} (X_{1} + \dots + X_{n})$ will likewise be approximately
normal for large enough n (with mean p_{X} , $sd. = \frac{T_{X}}{Tn}$).

```
Stat 145, Mon 18-Oct-2021 -- Mon 18-Oct-2021
Biostatistics
Spring 2021
_____
Monday, October 18th 2021
-----
Wk 8, Mo
Topic:: Central Limit Theorem
Read:: Lock5 5.2
Variables can
 - have an association, or
 - not have an association.
   We also talk about independent variables, which is roughly
   the same as
  Examples:
    1. If we draw twice from a bag and take
        X = 1st outcome
        Y = 2nd outcome
      then X and Y are
       i) independent if sampling "with replacement"
          call this an i.i.d. random sample of size 2
      ii) approximately independent if the composition of the bag is
          little changed after the first draw
   2. If we draw n times from a bag and take
        X_1 = 1st outcome
        X_2 = 2nd outcome
            .
            .
        X_n = nth outcome
      the X_i are
       i) independent if sampling "with replacement"
```

call this an i.i.d. random sample of size n

ii) approximately independent if the composition of the bag is little changed after by the draws

Rule of thumb: Size a of sample is < 10% of size of bag's contents

A random variable X is one that is numeric for each case

- sex: F/M we think of as categorical (binary)
- X(case) = 0 if case=female, 1 if case=male is a random variable (turns outcomes into numbers)

Some facts about independent normal random variables

- If X and Y are independent normal random variables, with

X ~ Norm(mu_1, sigma_1) ~ means "has a normal dist. with mean μ_{i} , Sd σ_{i} " Y ~ Norm(mu_2, sigma_2)

then X+Y (their sum) is ~ Norm(mu_1 + mu_2, sqrt(sigma_1^2 + sigma_2^2)

then 🐙 (their difference) is ~ Norm(mu_1-mu_2, sqrt(sigma_1^2 + sigma_2^2))

Ex.: Suppose Ray and Joan are bowlers. Their scores have normal dists $R \sim Norm(142, 17)$ $J \sim Norm(138, 22)$ $R + J \sim Norm(280, 27.803)$

How likely is it for them, in one game, to have a combined score > 350?

Answer comes from 1- phorm (350, 280, 27.803)

 If we draw an i.i.d. random sample of size n, each X_i ~ Norm(mu, sigma), then the

 $sum = X_1 + ... + X_n$ is Norm(n mu, sigma sqrt(n)) avg = $(X_1 + ... + X_n) / n$ is Norm(mu, sigma / sqrt(n))

Central Limit Theorem

Suppose a random sample of size n is drawn from the population either

- with replacement (so it is i.i.d.), or
- with n smaller than 10% of the full population.
- If the variable of interest is quantitative and n is large enough, then the sum $X_1 + \ldots + X_n$ is approximately normal

the mean $(X_1 + \ldots + X_n)/n$ is approximately normal

If the variable of interest is binary categorical and n is large enough, then the sample proportion has approximately a normal distribution. Explorations using apps at
https://onlinestatbook.com/stat_sim/sampling_dist/index.html
https://shiny.calvin.edu:3838/scofield/samplingDists/
https://shiny.calvin.edu:3838/scofield/cltProportions/

Central Limit Theorem

In summary, here is the take-away from the **Central Limit Theorem**.

Suppose you have a random sample of size *n* that is either

- i.i.d., or
- an SRS, with the sample size *n* being no more than 10% of the size of the population.

In the case that

- 1. the variable under consideration is quantitative, having population mean μ and standard deviation σ , then the sampling distribution for the sample mean \overline{X} is approximately Norm $(\mu, \sigma / \sqrt{n})$ for *n* large enough.
- 2. the variable under consideration is binary categorical, having population proportion p, then the sampling distribution for the sample proportion \hat{p} is approximately Norm $(p, \sqrt{p(1-p)/n})$ for n large enough.

Since

- null distributions
- randomization distributions
- bootstrap distributions

are all specialized versions of sampling distributions, then so long as the sample statistic in question is the sample's *mean* \overline{X} or the sample *proportion* \widehat{p} , we can expect the CLT to apply to these as well.