Sampling of size n from population

- model: slips drawn from bag
- drawing $\left.\begin{array}{l}\text { with replacement (i.i.d.) } \\ \text { without replacement (SRS) }\end{array}\right\}$ very little differmen it $n \ll$ size of population if $\frac{n}{\text { size of population }} \leq 0.1$

Think of independence as evens not influencing one another.
Extend idea of indepudence to variables X, Y :
say they are independent if they are not associated

Several facts about quantitative vars.

1. If X, Y are quant. vars and X has a mean μ_{x}, Y has a mean μ_{Y}, then their sum $X+Y$ has mean $\mu_{X}+\mu_{Y}$. Their difference $X-Y$ has mean $\mu_{X}-\mu_{Y}$.

Ex-) If yore a golfer and average 91 strokes on course A and 83 strokes on course B. If yow play both courses on one day, and take

$$
\begin{aligned}
& X=\text { your score on course } A \\
& Y=" \quad \cdots
\end{aligned}
$$

then
average som $X+Y$ will be $\mu_{x}+\mu_{x}=91883=174$
" difference $x-4$ ". $\mu_{x}-\mu_{4}=91-83=8$.
2. If x, y are independent and x has a sid. σ_{x}, y has a standard deviation σ_{y}, then both
$\left.\begin{array}{l}x+y \\ x-y\end{array}\right\}$ have standard deviation $\sqrt{\sigma_{x}^{2}+\sigma_{y}{ }^{2}}$.

Say Laura is a bowler whose scores have mean $\quad \mu=161$
sd. $\sigma=14$
Laura bowls two games adding her sure

$$
\begin{aligned}
& X_{1}=\text { score in } 1^{\text {st }} \\
& X_{2}=" * 2^{\text {nd }}
\end{aligned}
$$

Know

$$
\begin{aligned}
S=x_{1}+x_{2} \text { has mean } 161+161 & =322 \\
\text { " s.d. } \sqrt{14^{2}+14^{2}} & =\sqrt{2(14)^{2}}=14 \sqrt{2} \\
& =\sigma \sqrt{2} .
\end{aligned}
$$

If she bowls 3 games, then her summed/total score

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} \text { has mean } & =3 \mu=3(161) \\
\text { s.d. } & =\sqrt{14^{2}+14^{2}+14^{2}}=14 \sqrt{3} .
\end{aligned}
$$

3. Corollary to 2:

If $X_{1}, X_{2}, \ldots, X_{n}$ is an i.i.d. sample from a population with mean μ, s.d. σ, then the
a) mean for the sum: $n \mu$, s.d. for sum: $\sigma \sqrt{n}$
b) mean for $\frac{1}{n}\left(X_{1}+x_{2}+\cdots+X_{n}\right)$ (i.e., the moan for the sample mean \bar{X})
$\mu_{\bar{x}}=\mu \quad\binom{$ sample means are unbiased estimators }{ of the population mean } and the s.d. of \bar{x}

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

Ex.
If Laue bowls 3 games, expect her average of the throe

$$
\bar{x}=\frac{1}{3}\left(x_{1}+x_{2}+x_{3}\right)
$$

to have a distribution with mean 161 and s.d. $\frac{14}{\sqrt{3}}$

If she bowls 20 genes, then her average

$$
\bar{x}=\frac{1}{20}\left(x_{1}+x_{2}+\cdots+x_{20}\right)
$$

will have mean $=161$ and sid. $\frac{14}{\sqrt{20}}$.
Central Limit Theorem:
(1) The sum of x_{1}, \ldots, x_{n} (i.i.d. sample from quantitative pppultion) has an approximate normal distribution for large enough n (and given what we lecrand above, that normal dist. will have mean $n \mu_{x}$ and sid. $\sigma_{x} \sqrt{n}$).
2) The arrange $\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)$ will likewise be approximately normal for large enough n (with mean μ_{x}, sc. $=\frac{\sigma_{x}}{\sqrt{n}}$).

Both chios assume i.i.d. Samples X_{1}, \ldots, X_{n} taken from a population, They also apply for SRS: if rule of theme (sampling less then 10% if population).

Stat 145, Mon 18-Oct-2021 -- Mon 18-Oct-2021
Biostatistics
Spring 2021

Monday, October 18th 2021

Wk 8, Mo
Topic:: Central Limit Theorem
Read:: Lock5 5.2

Variables can

- have an association, or
- not have an association.

We also talk about independent variables, which is roughly the same as

Examples:

1. If we draw twice from a bag and take
$\mathrm{X}=1$ st outcome
$Y=2 n d$ outcome
then X and Y are
i) independent if sampling "with replacement" call this an i.i.d. random sample of size 2
ii) approximately independent if the composition of the bag is little changed after the first draw
2. If we draw n times from a bag and take

X_1 = 1st outcome
X_2 = 2nd outcome
.
.

X_n = nth outcome
the X_i are
i) independent if sampling "with replacement" call this an i.i.d. random sample of size n
ii) approximately independent if the composition of the bag is little changed after by the draws

Rule of thumb: size n of sample is $\leq 10 \%$ of size of bag's contents

A random variable X is one that is numeric for each case

- sex: F / M we think of as categorical (binary)
- X(case) = 0 if case=female, 1 if case=male is a random variable (turns outcomes into numbers)

Some facts about independent normal random variables

- If X and Y are independent normal random variables, with
$\mathrm{X} \sim \operatorname{Norm}\left(m u _1\right.$, sigma_1) - means "has a normal dist. with mean μ_{1}, sd σ_{1}^{n}
Y ~ Norm(mu_2, sigma_2)
then $\mathrm{X}+\mathrm{Y}$ (their sum) is ~Norm(mu_1 + mu_2, sqrt(sigma_1^2 + sigma_2^2)
then (their difference) is ~Norm(mu_1-mu_2, sqrt(sigma_1^2 + sigma_2^2)) $x-y$
Ex.: Suppose Ray and Joan are bowlers. Their scores have normal dists R ~ Norm $(142,17)$
J ~ Norm $(138,22)$

$$
R+J \sim \operatorname{Norm}(280,27.803)
$$

How likely is it for them, in one game, to have a combined score > 350 ? Answer comes from $1-\operatorname{phorm}(350,280,27.803)$

- If we draw an i.i.d. random sample of size n, each X_{-}i \sim Norm(mu, sigma), then the

```
sum = X_1 + ... + X_n is Norm(n mu, sigma sqrt(n))
avg = (X_1 + ... + X_n) / n is Norm(mu, sigma / sqrt(n))
```


Central Limit Theorem

Suppose a random sample of size n is drawn from the population either

- with replacement (so it is i.i.d.), or
- with n smaller than 10% of the full population.

If the variable of interest is quantitative and n is large enough, then the sum $\mathrm{X} _1$ + ... + X_n is approximately normal the mean ($\mathrm{X} _1+\ldots+\mathrm{X} _\mathrm{n}$)/n is approximately normal
If the variable of interest is binary categorical and n is large enough, then the sample proportion has approximately a normal distribution.

```
Explorations using apps at
    https://onlinestatbook.com/stat_sim/sampling_dist/index.html
    https://shiny.calvin.edu:3838/scofield/samplingDists/
    https://shiny.calvin.edu:3838/scofield/cltProportions/
```


Central Limit Theorem

In summary, here is the take-away from the Central Limit Theorem.
Suppose you have a random sample of size n that is either

- i.i.d., or
- an SRS, with the sample size n being no more than 10% of the size of the population.

In the case that

1. the variable under consideration is quantitative, having population mean μ and standard deviation σ, then the sampling distribution for the sample mean \bar{X} is approximately $\operatorname{Norm}(\mu, \sigma / \sqrt{n})$ for n large enough.
2. the variable under consideration is binary categorical, having population proportion p, then the sampling distribution for the sample proportion \widehat{p} is approximately $\operatorname{Norm}(p, \sqrt{p(1-p) / n})$ for n large enough.

Since

- null distributions
- randomization distributions
- bootstrap distributions
are all specialized versions of sampling distributions, then so long as the sample statistic in question is the sample's mean \bar{X} or the sample proportion \widehat{p}, we can expect the CLT to apply to these as well.

