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Stat 145, Mon 18-0ct-2021 -- Mon 18-0Oct-2021
Biostatistics
Spring 2021

Wk 8, Mo
Topic:: Central Limit Theorem
Read:: Lock5 5.2

Variables can
- have an association, or
- not have an association.
We also talk about independent variables, which is roughly

the same as

Examples:
1. If we draw twice from a bag and take
X
Y
then X and Y are

1st outcome
2nd outcome

i) independent if sampling "with replacement"

call this an i.i.d. random sample of size 2

ii) approximately independent if the composition of the bag is
little changed after the first draw

2. If we draw n times from a bag and take
X_1 = 1st outcome
X_2 = 2nd outcome

X_n = nth outcome
the X_i are
i) independent if sampling "with replacement"
call this an i.i.d. random sample of size n
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ii) approximately independent if the composition of the bag is
little changed after by the draws

Qe L thanb. S n OQ Sew\‘\c o <10k & s d c"‘is Codeds

A random variable X is one that is numeric for each case
- sex: F/M we think of as categorical (h“&f&\
- X(case) = 0 if case=female, 1 if case=male is a random variable thrw(odhwwws tuts ﬂuhLuK)

Some facts about independent normal random variables
- If X and Y are independent normal random variables, with
X ~ Norm(mu_1, sigma_1) — wwwn$ “hes & normed disF. with mesan )k{) SA dlh
Y ~ Norm(mu_2, sigma_2)
then X+Y (their sum) is ~ Norm(mu_1 + mu_2, sqrt(sigma_142 + sigma_242)
then 3#¥ (their difference) is ~ Norm(mu_l-mu_2, sqrt(sigma_142 + sigma_2A2)>
S
Ex.: Suppose Ray and Joan are bowlers. Their scores have normal dists
R ~ Norm(142, 17) Qs j N Mww\ (’L%O 278053
J ~ Norm(138, 22) /
How likely is it for them, in one game, to hav;\a\combined score > 3507

\
AvxSme_r Comes  vrown \ ~ Prorm (35.0/ 1%‘[) ) Z?‘%D%>

- If we draw an i.i.d. random sample of size n, each X_i ~ Norm(mu, sigma),
then the
sum = X_1 + ... + X_n is Norm(n mu, sigma sqrt(n))
avg = (X_1 + ... + Xn) / n is Norm(mu, sigma / sqrt(n))

Central Limit Theorem
Suppose a random sample of size n is drawn from the population either
- with replacement (so it is i.i.d.), or
- with n smaller than 10% of the full population.
If the variable of interest is quantitative and n is large enough, then
the sum X_1 + ... + X_n is approximately normal
the mean (X_1 + ... + X n)/n is approximately normal
If the variable of interest is binary categorical and n is large enough,
then the sample proportion has approximately a normal distribution.
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Explorations using apps at
https://onlinestatbook.com/stat_sim/sampling_dist/index.html
https://shiny.calvin.edu:3838/scofield/samplingDists/
https://shiny.calvin.edu:3838/scofield/cltProportions/

Central Limit Theorem

In summary, here is the take-away from the Central Limit Theorem.

Suppose you have a random sample of size n that is either

e iid., or

e an SRS, with the sample size n being no more than 10% of the size of the population.
In the case that

1. the variable under consideration is quantitative, having population mean p and stan-
dard deviation o, then the sampling distribution for the sample mean X is approximately
Norm(u, o/ v/n) for n large enough.

2. the variable under consideration is binary categorical, having population proportion p, then
the sampling distribution for the sample proportion pis approximately Norm(p, 4/p(1 —p)/n)
for n large enough.
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Since

e null distributions
e randomization distributions

e bootstrap distributions

are all specialized versions of sampling distributions, then so long as the sample statistic in question
is the sample’s nean X or the sample proportion p, we can expect the CLT to apply to these as well.




