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Central Limit Theorem 5.7

Son

In summary, here is the take-away from the Central Limit Theorem: ~ .

Suppose you have a random sample of size n that is either

e iid., or

e an SRS, with the sample size n being no more than 10% of the size of the population.
In the case that

1. the variable under consideration is quantitative, having population mean p and stan-
dard deviation o, then the sampling distribution for the sample mean X is approximately
Norm(u, o/ v/n) for n large enough.

2. the variable under consideration is binary categorical, having population proportion p, then
the sampling distribution for the sample proportion p is approximately Norm(p, \/p(1 —p)/n)
for n large enough.
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Since

e null distributions
e randomization distributions

e bootstrap distributions

are all specialized versions of sampling distributions, then so long as the sample statistic in question
is the sample’s nean X or the sample proportion p, we can expect the CLT to apply to these as well.

Explorations using apps at
https://shiny.calvin.edu:3838/scofield/samplingDists/
https://shiny.calvin.edu:3838/scofield/cltProportions/

or, for means, use script samplingDistOfSampleMeanExperiments.R
require(mosaic)

require(gridExtra)

# Create a population

mypop <- 50 - rexp(10000, rate=.15) # left-skewed
#mypop <- rgamma (10000, shape=1.6, rate=.1) # right-skewed
#mypop <- rnorm(10000, mean=25, sd=6) # normal

print (favstats(~mypop))

# Simulate the sampling distribution for the sample mean

sampleSize = 20

manyMeans <- do(5000) * mean(~sample(mypop, sampleSize, replace=TRUE))
print(favstats(~mean, data=manyMeans))

pl <- gf_density(~mypop) %>% gf_refine(scale_x_continuous(limits=c(0,55)))

p2 <- gf_density(~mean, data=manyMeans) %>%
gf_refine(scale_x_continuous(limits=c(®,55)))

grid.arrange(pl, p2, nrow=2)
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Chapter 6 overview
- Scenarios are all ones we have discussed
univariate (one population)
proportion arising from binary categorical variable
mean arising from quantitative variable
2 populations
difference of proportions
difference of means investigated using
two independent samples
matched pairs

- Deferred to later chapter: 2 quant vars

- Can see Chapter 6 as something of a history lesson

- Relies entirely on facts from Central Limit Theorem

Sections 1-3: single proportion

Confidence interval construction
- review how done using bootstrapping (Ch. 3)
- refining the z*-value
in past, stats students used tables of Z-scores
see https://www.math.arizona.edu/~jwatkins/normal-table.pdf
compare with pnorm(), gnorm() calculations
- formula for SE

Practice:

- obtaining critical z* values for
96% confidence
90% confidence
99% confidence

- doing inference (CI and hypothesis testing) with datasets
1. in 119 games of rock-paper-scissors, player did rock 66 times
2. in 70 out of 120 soccer games, the home team won
3. suppose that 42% of people have 0+ blood. sample shows 65 out of 192




