Two-Proportion inference

Thomas Scofield

October 26, 2021
First, a fact: Related to C LT (forts from

Theorem: Suppose X and Y are independent variables, and both are normally distributed, with $X \sim$ $\operatorname{Norm}\left(\mu_{X}, \sigma_{X}\right)$ and $Y \sim \operatorname{Norm}\left(\mu_{Y}, \sigma_{Y}\right)$. Then their difference $X-Y$ also has a normal distribution, with $(X-Y) \sim \operatorname{Norm}\left(\mu_{X}-\mu_{Y}, \sqrt{\sigma_{X}^{2}+\sigma_{Y}^{2}}\right)$.

Two-Proportion context

Imagine you have two groups/populations in mind, and you take independent samples, one of size n_{1} from Group 1, and one of size n_{2} from Group 2. The variable you measure is binary categorical (sex, Christian or not?, have a certain gene or not?). The proportions of successes are

- $\overbrace{p_{1}, p_{2}}$, in parameters
- $\widehat{p}_{1}, \widehat{p}_{2}$, in the two samples

Note that

- $\widehat{p}_{1}, \widehat{p}_{2}$ should be independent, since the samples are.
- If the rules-of-thumb

$$
n_{1} p_{1} \geq 10 \quad \text { and } \quad n_{1}\left(1-p_{1}\right) \geq 10
$$

are met, then

$$
\hat{p}_{1} \sim \operatorname{Norm}\left(p_{1}, \sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}}\right) . \quad-\quad F_{\text {nom Sections }} 6.1-6.3
$$

- Likewise, if

$$
n_{2} p_{2} \geq 10 \quad \text { and } \quad n_{2}\left(1-p_{2}\right) \geq 10
$$

then

$$
\hat{p}_{2} \sim \operatorname{Norm}\left(p_{2}, \sqrt{\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}\right)
$$

Under these conditions, the theorem tells us

$$
\begin{aligned}
& \text { By Theorem } \\
& \widehat{p}_{1}-\widehat{p}_{2} \sim \operatorname{Norm}\left(p_{1}-p_{2}, \sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}\right) .
\end{aligned}
$$

This is a statement about the sampling distribution for $\widehat{p}_{1}-\widehat{p}_{2}$-that (under conditions) it is approximately normal. Thus, the spread of that sampling distribution is rightly called the standard error of $\widehat{p}_{1}-\widehat{p}_{2}$:

$$
\mathrm{SE}_{\widehat{p}_{1}-\widehat{p}_{2}}=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}
$$

6.8 Confidence Intervals for $p_{1}-p_{2}$

It's going to be the usual thing:

$$
(\text { point estimate }) \pm\left(z^{*}\right)\left(\mathrm{SE}_{\widehat{p}_{1}-\widehat{p}_{2}}\right)
$$

or, adapting to our situation (and the fact that we do not know the values of p_{1}, p_{2}):

$$
\left(\widehat{p}_{1}-\widehat{p}_{2}\right) \pm\left(z^{*}\right) \sqrt{\frac{\widehat{p}_{1}\left(1-\widehat{p}_{1}\right)}{n_{1}}+\frac{\widehat{p}_{2}\left(1-\widehat{p}_{2}\right)}{n_{2}}}
$$

Examples:

1. One True Love (see Example 6.19). Here (summarized data)

$$
\widehat{p}_{f}=\frac{363}{1412} \doteq 0.257 \quad \text { and } \quad \widehat{p}_{m}=\frac{372}{1213} \doteq 0.307
$$

$$
\begin{aligned}
& \text { You try } \\
& \text { a } 98^{\circ} \% \\
& \text { CI. }
\end{aligned}\left\{\begin{array}{c}
\text { 2. Scolding Crows (see Data 6.3). Here (summarized data) } \\
\hat{p}_{1}=\frac{158}{444} \doteq 0.356 \quad \text { and } \quad \widehat{p}_{2}=\frac{109}{922} \doteq 0.118 \\
\text { Group 1 represents the "taggers". }
\end{array}\right.
$$

3. KidsFeet (available when Mosaic package is loaded). Here, we have raw data on variables biggerfoot and domhand.

Details

$$
\begin{aligned}
\text { 1. } & \hat{p}_{1}-\hat{p}_{2}
\end{aligned}=0.257-0.307=-0.05 ~=~(0.257)(1-0.257)+\frac{(0.307)(0.693)}{1412}=0.01762
$$

approx.

$$
\text { lead if confidence }-\operatorname{sey} 95 \% \Rightarrow z^{*}=1.96
$$

Then ow 95% CI

$$
(-0.05) \pm(1.96)(0.01762) \text { or }(-0.085,-0.015)
$$

Carrying out the Scolding Crows example, we have

- point estimate

```
pointEst <- 158/444 - 109/922
pointEst
## [1] 0.2376346
- standard error
se = sqrt(158/444*(1 - 158/444)/444 + 109/922*(1-109/922)/922)
se
## [1] 0.02508647
```

 - \(\mathrm{z}^{*}\)-value
 zstar <- qnorm(.99)
zstar
\#\# [1] 2.326348

And the $98 \% \mathrm{CI}$ is

```
pointEst + c(-1,1)*zstar*se
## [1] 0.1792747 0.2959944
```

If we use prop.test () as a one-stop-shopping method to solve (saving us from the individual calculations)

```
prop.test(c(158,109), c(444,922), conf.level=.98)
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c out of c158 out of 444109 out of 922
## X-squared = 106.11, df = 1, p-value < 2.2e-16
## alternative hypothesis: two.sided
## 98 percent confidence interval:
## 0.1776063 0.2976629
## sample estimates:
## prop 1 prop 2
## 0.3558559 0.1182213
```

