Stat 145, Wed 27-Oct-2021 -- Wed 27-Oct-2021
Biostatistics
Spring 2021

Wednesday, October 27th 2021

Due)) WW ch06Part2 due at 11 pm

Wednesday, October 27th 2021

Wk 9, We
Topic:: Two-proportion hypothesis tests
Read:: Lock 6.9
HW (C WW ch06Part3 due Sat.

Hypothesis testing for the difference of two proportions

For problems in this vein, we have some binary categorical variable (like for 1-proportion problems) of interest, but wish to compare proportions of "successes" in two distinct groups/populations. We have samples of size n_{1} and n_{2} respectively from these groups, yielding sample proportions \hat{p}_{1}, \hat{p}_{2}.

If we can assume both \hat{p}_{1}, \hat{p}_{2} have normal distributions (i.e., rules of thumb are met), then the prototype standard error for the difference $\hat{p}_{1}-\hat{p}_{2}$ is

$$
\mathrm{SE}_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}
$$

What we used for building a confidence interval was

$$
\begin{array}{r}
\mathrm{SE}_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}} . \quad \text { modified for when } \\
\text { - dort have } p_{1}, p_{2} \\
\text { - constructing a CI }
\end{array}
$$

When conducting an hypothesis test, where the null hypothesis is that the groups are not really different with regards to the binary categorical explanatory variable (Which-group? variable), we have

$$
\mathbf{H}_{0}: p_{1}-p_{2}=0
$$

This leads us to replace both \hat{p}_{1}, \hat{p}_{2} with a pooled proportion

$$
\hat{p}=\frac{(\text { number of successes in sample } 1)+(\text { number of successes in sample } 2)}{n_{1}+n_{2}}
$$

in which case the approximate standard error is

$$
\mathrm{SE}_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n_{1}}+\frac{\hat{p}(1-\hat{p})}{n_{2}}}=\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} .
$$

It is this standard error we use to obtain a standardized z-statistic

1. 379 of 460 females support tougher gun-control laws, 318 of 520 males
2. 10 of 24 cocaine addicts treated with desipramine had relapses, compared with 20 of 24 who received placebo
3. Kidsfeet domhand vs. beggerfoot

$$
\text { 1. } \begin{aligned}
& \hat{p}_{f}= \frac{379}{460}, \hat{p}_{m}=\frac{318}{520}, \quad \text { ant } \hat{p}=\frac{379+318}{4607520}=\frac{697}{980} \\
& S E_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{697 / 980\left(1-\frac{697}{980}\right)\left(\frac{1}{460}+\frac{1}{520}\right)}=0.029 \\
& \text { Standardized test statistic } \\
& z= \frac{\hat{p}_{f}-\hat{p}_{m}}{S E}=\frac{379 / 460-318 / 520}{0.029}=7.32
\end{aligned}
$$

