Lawren, Natalie F , Jeffry, Valeria, Naomi

Stat 145, Fri 29-Oct-2021 -- Fri 29-Oct-2021 Biostatistics Spring 2021

Friday, October 29th 2021

Wk 9, Fr

Topic:: Inference on two means Read:: Lock5 6.10-6.13

Ch.6 theme Redoing CI and Hyp. Tests now equipped w/ formulas for SE

+ - distributions appeared . as a substitute for normal dists · only in content of inference on a mean main focus : $\mu - estimate log x$ s, Lelsght: meded σ (SE = \overline{T}) estimate by s

Two-Sample t Inference

Thomas Scofield

October 29, 2021

Recall this fact:

Theorem: Suppose X and Y are independent variables, and both are normally distributed, with $X \sim \text{Norm}(\mu_X, \sigma_X)$ and $Y \sim \text{Norm}(\mu_Y, \sigma_Y)$. Then their difference X - Y also has a normal distribution, with $(X - Y) \sim \text{Norm}(\mu_X - \mu_Y, \sqrt{\sigma_X^2 + \sigma_Y^2})$.

Two-sample t context

Imagine you have two groups/populations in mind, and you take *independent* samples, one of size n_1 from Group 1, and one of size n_2 from Group 2. The variable you measure is quantitative, so you can talk about

- μ_1, μ_2 , means for the two populations
- σ_1, σ_2 , standard deviations for the two populations
- $\overline{x}_1, \overline{x}_2$, means for the two samples
- s_1, s_2 , standard deviations for the two samples

Note that

- $\overline{x}_1, \overline{x}_2$ should be independent, since the samples are.
- If either $n_1 \geq 30$, or if Population 1's values are reasonably symmetric, bell-shaped, then

$$\overline{x}_1 \sim \operatorname{Norm}\left(\mu_1, \frac{\sigma_1}{\sqrt{n_1}}\right)^{2}$$
. CLT says this

• Likewise, if either $n_2 \ge 30$, or if Population 2's values are reasonably symmetric, bell-shaped, then

$$\overline{x}_2 \sim \operatorname{Norm}\left(\mu_2, \overbrace{\sqrt{n_2}}^{\sigma_2}\right).$$
orem tells us
$$\overline{x}_1 - \overline{x}_2 \sim \operatorname{Norm}\left(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1}{n_1^2} + \frac{\sigma_2}{n_2^2}}\right).$$

variable that his mean so

Under these conditions, the theorem tells us

This is a statement about the sampling distribution for
$$\overline{x}_1 - \overline{x}_2$$
—that (under conditions) it is approximately normal. Thus, the *spread* of that sampling distribution is rightly called the **standard error** of $\overline{x}_1 - \overline{x}_2$:

$$\mathrm{SE}_{\overline{x}_1-\overline{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1^2} + \frac{\sigma_2^2}{n_2^2}}.$$

Confidence Intervals for $\mu_1 - \mu_2$

Again, the overarching process is the centered interval approach:

(point estimate)
$$\pm$$
 (critical value)(SE _{$\overline{x}_1 - \overline{x}_2$}).

As we will almost never know σ_1 , σ_2 , we will estimate this standard error using the approximation

$$\mathrm{SE}_{\overline{x}_1-\overline{x}_2} = \sqrt{\frac{s_1}{n_1} + \frac{s_2}{n_2}}.$$

As before, the need to estimate another (and non-central) parameter forces us to employ t-distributions. Thus, the line above looks like

$$(\overline{x}_1 - \overline{x}_2) \pm (t^*) \sqrt{\frac{s_1}{n_1^{\bullet}} + \frac{s_2}{n_2^{\bullet}}}.$$

Choosing degrees of freedom

If we specify 95% as the confidence level, then we must choose the best *t*-distribution so as to have a corresponding success rate of 95%. It is not known how to do so so that we *always* obtain the desired success rate. There are several strategies:

1. Satterthwaite formula:
aka Satterthwaite - Usuch
aka Welch approximation
2. Conservative estimate:
Targht in Lock 5

$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$

$$df = \min(n_1, n_2) - 1.$$

$$fhere two sample$$
Sizes

Example data:

1. Case: summary data is all we know

Means are for number of beetle larvae per stem in oat crop

Group	n	x-har	s	unstandarbited test statistic X - X 2
				= 3.47 - 1.36 = 2.11
Control	13	3.47	1.21	$SE_{-} = \frac{1.21^2}{1.21^2} + 0.52^2 = 0.27322$
Malathion	14	1.36	0.52	x,-x, 13 14 50.365 CS
Construct a	95% CI	for diffe	erence mu_C	- mu_M $t^* = gt(0.975, f = 12)$

Test hypothesis that mu_C-mu_M = 0 vs. one-sided alternative

2. CaffeineTaps data I.(continued) A 95% CE $(p.sutest./unstanlarkized test start) t (t*)(SE_{2,-SE_2})$ $Z.11 \pm 2.1788 (0.36323)$ Vesults in CE (1.319, 2.901).

$$favstots(Taps ~ Group, Jota = Catterine Taps)$$

$$gives \quad \overline{x}_{c} = 248.3, \quad s_{c} = 2.2136, \quad n_{c} = 10$$

$$\overline{x}_{p} = 244.8, \quad s_{p} = 2.3944, \quad n_{p} = 10$$

$$print est: \quad \overline{x}_{c} - \overline{x}_{p} = 249.3 - 244.8 = 3.5$$

$$est. SE = \sqrt{\frac{2.2136^{2}}{10} + \frac{2.3944^{2}}{10}} = 1.0312$$

$$for 96\% enf. \quad t^{*} = gt(.98, df = 9) = 2.3984$$

2

All-in-one-step adulations provided by t-test() but you have to have access to the row data. So, it's usuble for problem Z, but not for Problem!

t.test (Tape ~ Group, data = Caffeine Taps, cont.level = 0.96)