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Two-Sample t Inference
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Recall this fact:
Theorem: Suppose X and Y are independent variables, and both are normally distributed, with X ≥
Norm(µX , ‡X) and Y ≥ Norm(µY , ‡Y ). Then their di�erence X ≠ Y also has a normal distribution, with
(X ≠ Y ) ≥ Norm(µX ≠ µY ,


‡2

X + ‡2
Y ).

Two-sample t context

Imagine you have two groups/populations in mind, and you take independent samples, one of size n1 from
Group 1, and one of size n2 from Group 2. The variable you measure is quantitative, so you can talk about

• µ1, µ2, means for the two populations
• ‡1, ‡2, standard deviations for the two populations
• x1, x2, means for the two samples
• s1, s2, standard deviations for the two samples

Note that
• x1, x2 should be independent, since the samples are.
• If either n1 Ø 30, or if Population 1’s values are reasonably symmetric, bell-shaped, then

x1 ≥ Norm
3

µ1,
‡1Ô
n1

4
.

• Likewise, if either n2 Ø 30, or if Population 2’s values are reasonably symmetric, bell-shaped, then

x2 ≥ Norm
3

µ2,
‡2Ô
n2

4
.

Under these conditions, the theorem tells us

x1 ≠ x2 ≥ Norm
3

µ1 ≠ µ2,

Ú
‡1
n2

1
+ ‡2

n2
2

4
.

This is a statement about the sampling distribution for x1 ≠ x2—that (under conditions) it is approximately
normal. Thus, the spread of that sampling distribution is rightly called the standard error of x1 ≠ x2:

SEx1≠x2 =
Ú

‡1
n2

1
+ ‡2

n2
2

.
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Confidence Intervals for µ1 ≠ µ2

Again, the overarching process is the centered interval approach:

(point estimate) ± (critical value)(SEx1≠x2).

As we will almost never know ‡1, ‡2, we will estimate this standard error using the approximation

SEx1≠x2 =
Ú

s1
n2

1
+ s2

n2
2

.

As before, the need to estimate another (and non-central) parameter forces us to employ t-distributions.
Thus, the line above looks like

(x1 ≠ x2) ± (tú)
Ú

s1
n2

1
+ s2

n2
2

.

Choosing degrees of freedom

If we specify 95% as the confidence level, then we must choose the best t-distribution so as to have a
corresponding success rate of 95%. It is not known how to do so so that we always obtain the desired success
rate. There are several strategies:

1. Satterthwaite formula:

df =

3
s2

1
n1

+ s2
2

n2

42

(s2
1/n1)2

n1 ≠ 1 + (s2
2/n2)2

n2 ≠ 1
2. Conservative estimate:

df = min(n1, n2) ≠ 1.
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STAT 145 Daily Notes

Example data:

1. Case: summary data is all we know

Means are for number of beetle larvae per stem in oat crop

Group n x-bar s

------ --- ------ -----

Control 13 3.47 1.21

Malathion 14 1.36 0.52

Construct a 95% CI for difference mu_C - mu_M

Test hypothesis that mu_C-mu_M = 0 vs. one-sided alternative

2. CaffeineTaps data
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96 CI

3.5 I 2.398411.0312 or l 02685.973

Allin one step adulations provided by ttealC If youhave
tohaveaccessto the raw data So it's usable for problem 2
butnotfor Problem

f test Taps n Group data_CaffeineTaps conflevel 0.96


