Including Mathematics Symbols in Reports

Embedding math symbols right in the midst of text is done by placing the symbols between *single* dollar signs. Isaac Newton's famous 2nd law is F = ma (coded in RMarkdown as F = ma), but perhaps Einstein's $E = mc^2$ (coded as $E = mc^2$) is even more well-known. It is generally preferred to enclose even simple variables in dollar signs, as the italics make them *look* math-y. So, x is considered better than just plain x.

Note that certain mathematical constructions follow the same sort of conventions that R functions follow: there is a name, often one that begins with a backslash character, indicating *what* sort of construct you want, and then there can be information that follows that name, often enclosed in curly braces $\{ \}$ (though these usually aren't needed if there is just one character), indicating what sorts of symbols are part of the construct.

- Subscripts. One uses the underscore __ character, with no backslash. x₁, x₂, ..., x_{n-1}, x_n are produced by the inclusion, in the RMarkdown source file, of commands such as \$x_{n-1}\$ and \$x_n\$. We get _nC_r from the command \$_nC_r\$.
- Exponents/superscripts. One uses the caret $\hat{}$ character, with *no* backslash. t^* and e^{2x-1} are the result of t^* and e^{2x-1} .
- Roots. The keyword is \sqrt. $\sqrt{x^2+1}$ and $\sqrt[3]{35}$ come from the commands $\sqrt{x^2+1}$ and $\sqrt[3]{35}$.
- Lines over the top of characters. The keyword is \overline. \overline{x} and $\overline{x+y}$ result from the commands $\operatorname{Voverline} x$ and $\operatorname{Voverline} x$.
- Fractions. The keyword is \frac, which is followed by *two* sets of curly braces, the first indicating the numerator's symbols, and the second the denominator's. $\frac{X+Y}{2}$ is obtained from $\frac{X+Y}{2}$. (Note: because the denominator has just one symbol, $\frac{X+Y}{2}$ would achieve the same thing.)
- Summations. The keyword is \sum. $\sum_{i=1}^{n} x_i$, $\sum_{i=1}^{n} x_i$.
- Hat-notation. The keyword is \hat (or sometimes \widehat). \$\hat p\$ produces \hat{p} . But we probably prefer \widehat{Price} (from \$\widehat{Price}\$) over \widehat{Price} .
- Binary operators. These are produced by keywords alone. The symbols +, −, ×, ·, ÷ are produced by \$+\$, \$-\$, \$\times\$, \$\cdot\$, \$\div\$.
- Greek letters. Use backslash and the letter's name spelled out in English. \$\alpha\$ produces α, \$\beta_0\$ produces β₀, \$\rho\$ produces ρ, \$\mu\$ produces μ, \$\sigma\$ produces σ, \$\epsilon\$ produces σ, \$\epsilon\$
- Special symbols. Like some of the binary operators mentioned above, there are a host of special symbols in mathematics, like ± (generated by \$\pm\$), ~ (generated by \$\sim\$), ≤ (generated by \$\le\$), ≥ (generated by \$\ge\$), and ∘. The last of these may be of most use as a superscript, when describing angles, or temperatures as in 42° F.

When you want an equation to have its own line, set apart from other text, place your mathematical symbols between *double* dollar signs, not single ones. You may remember the **quadratic formula** $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ from a mathematics class you once took. To put it in the previous sentence, I placed the command $\frac{1}{2a} + \frac{1}{2a} + \frac$

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

See if you can typeset the formula for the sample standard deviation (see below) using only the constructs we have described here.

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

File creation date: 2018-09-26

Author: Thomas Scofield